13 research outputs found

    Synthesis optimization of carbon-supported ZrO2 nanoparticles from different organometallic precursors

    Get PDF
    We report here the synthesis of carbon-supported ZrO2 nanoparticles from zirconium oxyphthalocyanine (ZrOPc) and acetylacetonate [Zr(acac)4]. Using thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), we could investigate the thermal decomposition behavior of the chosen precursors. According to those results, we chose the heat treatment temperatures (THT) using partial oxidizing (PO) and reducing (RED) atmosphere. By X-ray diffraction we detected structure and size of the nanoparticles; the size was further confirmed by transmission electron microscopy. ZrO2 formation happens at lower temperature with Zr(acac)4 than with ZrOPc, due to the lower thermal stability and a higher oxygen amount in Zr(acac)4. Using ZrOPc at THT C900 °C, PO conditions facilitate the crystallite growth and formation of distinct tetragonal ZrO2, while with Zr(acac)4 a distinct tetragonal ZrO2 phase is observed already at THT C750 °C in both RED and PO conditions. Tuning of ZrO2 nanocrystallite size from 5 to 9 nm by varying the precursor loading is also demonstrated. The chemical state of zirconium was analyzed by X-ray photoelectron spectroscopy, which confirms ZrO2 formation from different synthesis routes

    Gallato Zirconium (IV) Phtalocyanine Complex Conjugated with SiO<sub>2</sub> Nanocarrier as a Photoactive Drug for Photodynamic Therapy of Atheromatic Plaque

    No full text
    A new conjugate of gallato zirconium (IV) phthalocyanine complexes (PcZrGallate) has been obtained from alkilamino-modified SiO2 nanocarriers (SiO2-(CH2)3-NH2NPs), which may potentially be used in photodynamic therapy of atherosclerosis. Its structure and morphology have been investigated. The photochemical properties of the composite material has been characterized. in saline environments when exposed to different light sources Reactive oxygen species (ROS) generation in DMSO suspension under near IR irradiation was evaluated. The PcZrGallate-SiO2 conjugate has been found to induce a cytotoxic effect on macrophages after IR irradiation, which did not correspond to ROS production. It was found that SiO2 as a carrier helps the photosensitizer to enter into the macrophages, a type of cells that play a key role in the development of atheroma. These properties of the novel conjugate may make it useful in the photodynamic therapy of coronary artery disease

    Comparative phototransformation of environmental pollutants using metallophthalocyanines supported on electrospun polymer fibers

    No full text
    The fluorescence and photoactivity of a series of Zn and Lu phthalocyanine complexes incorporated in various polymer fibers were investigated for the phototransformation of 4-chlorophenol, 4-nitrophenol, and methyl orange. The phthalocyanine complexes functionalized on polystyrene and polysulfone polymer fibers could be applied in the degradation of 4-chlorophenol, 4-nitrophenol, and methyl orange with 4-chlorophenol being much more susceptible to degradation while methyl orange was the least. Also polymer fibers of polystyrene were found to be reusable
    corecore