1,576 research outputs found

    Integrative multiomics analysis highlights immune-cell regulatory mechanisms and shared genetic architecture for 14 immune-associated diseases and cancer outcomes

    Get PDF
    Developing functional insight into the causal molecular drivers of immunological disease is a critical challenge in genomic medicine. Here, we systematically apply Mendelian randomization (MR), genetic colocalization, immune-cell-type enrichment, and phenome-wide association methods to investigate the effects of genetically predicted gene expression on ten immune-associated diseases and four cancer outcomes. Using whole blood-derived estimates for regulatory variants from the eQTLGen consortium (n = 31,684), we constructed genetic risk scores for 10,104 genes. Applying the inverse-variance-weighted MR method transcriptome wide while accounting for linkage disequilibrium structure identified 664 unique genes with evidence of a genetically predicted effect on at least one disease outcome (p < 4.81 × 10(−5)). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci by using gene expression data derived from 18 types of immune cells. This highlighted many cell-type-dependent effects, such as PRKCQ expression and asthma risk (posterior probability = 0.998), which was T cell specific. Phenome-wide analyses on 311 complex traits and endpoints allowed us to explore shared genetic architecture and prioritize key drivers of disease risk, such as CASP10, which provided evidence of an effect on seven cancer-related outcomes. Our atlas of results can be used to characterize known and novel loci in immune-associated disease and cancer susceptibility, both in terms of elucidating cell-type-dependent effects as well as dissecting shared disease pathways and pervasive pleiotropy. As an exemplar, we have highlighted several key findings in this study, although similar evaluations can be conducted via our interactive web platform

    Harnessing Whole Genome Polygenic Risk Scores to Stratify Individuals Based on Cardiometabolic Risk Factors and Biomarkers at Age 10 in the Lifecourse - Brief Report

    Get PDF
    In this study, we investigated the capability of polygenic risk scores to stratify a cohort of young individuals into risk deciles based on 10 different cardiovascular traits and circulating biomarkers. METHODS: We first conducted large-scale genome-wide association studies using data on adults (mean age 56.5 years) enrolled in the UK Biobank study (n=393 193 to n=461 460). Traits and biomarkers analyzed were body mass index, systolic blood pressure, diastolic blood pressure, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein B, apolipoprotein A-I, C-reactive protein and vitamin D. Findings were then leveraged to build whole genome polygenic risk scores in participants from the Avon Longitudinal Study of Parents and Children (mean age, 9.9 years) which were used to stratify this cohort into deciles in turn and analyzed against their respective traits. RESULTS: For each of the 10 different traits assessed, we found strong evidence of an incremental trend across deciles (all P<0.0001). Large differences were identified when comparing top and bottom deciles; for example, using the apolipoprotein B polygenic risk scores there was a mean difference of 13.2 mg/dL for this established risk factor of coronary heart disease in later life. CONCLUSIONS: Although the use of polygenic prediction in a clinical setting may currently be premature, our findings suggest they are becoming increasingly powerful as a means of predicting complex trait variation at an early stage in the lifecourse

    Triangulating molecular evidence to prioritize candidate causal genes at established atopic dermatitis loci

    Get PDF
    GWASs for atopic dermatitis have identified 25 reproducible loci. We attempt to prioritize the candidate causal genes at these loci using extensive molecular resources compiled into a bioinformatics pipeline. We identified a list of 103 molecular resources for atopic dermatitis etiology, including expression, protein, and DNA methylation quantitative trait loci datasets in the skin or immune-relevant tissues, which were tested for overlap with GWAS signals. This was combined with functional annotation using regulatory variant prediction and features such as promoter‒enhancer interactions, expression studies, and variant fine mapping. For each gene at each locus, we condensed the evidence into a prioritization score. Across the investigated loci, we detected significant enrichment of genes with adaptive immune regulatory function and epidermal barrier formation among the top-prioritized genes. At eight loci, we were able to prioritize a single candidate gene (IL6R, ADO, PRR5L, IL7R, ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less familiar candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). Our analysis provides support for previously implicated genes at several atopic dermatitis GWAS loci as well as evidence for plausible additional candidates at others, which may represent potential targets for drug discovery

    Mendelian Randomization Analyses Suggest Childhood Body Size Indirectly Influences End Points From Across the Cardiovascular Disease Spectrum Through Adult Body Size

    Get PDF
    Background Obesity is associated with long‐term health consequences including cardiovascular disease. Separating the independent effects of childhood and adulthood obesity on cardiovascular disease risk is challenging as children with obesity typically remain overweight throughout the lifecourse. Methods and Results This study used 2‐sample univariable and multivariable Mendelian randomization to estimate the effect of childhood body size both independently and after accounting for adult body size on 12 endpoints across the cardiovascular disease disease spectrum. Univariable analyses identified strong evidence of a total effect between genetically predicted childhood body size and increased risk of atherosclerosis, atrial fibrillation, coronary artery disease, heart failure, hypertension, myocardial infarction, peripheral artery disease, and varicose veins. However, evidence of a direct effect was weak after accounting for adult body size using multivariable Mendelian randomization, suggesting that childhood body size indirectly increases risk of these 8 disease outcomes via the pathway involving adult body size. Conclusions These findings suggest that the effect of genetically predicted childhood body size on the cardiovascular disease outcomes analyzed in this study are a result of larger body size persisting into adulthood. Further research is necessary to ascertain the critical timepoints where, if ever, the detrimental impact of obesity initiated in early life begins to become immutable

    Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis.

    Get PDF
    BACKGROUND: Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. METHODS AND FINDINGS: We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. CONCLUSIONS: These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD
    corecore