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Abstract  

Developing functional insight into the causal molecular drivers of immunological disease is a 

critical challenge in genomic medicine. Here we systematically apply Mendelian randomization 

(MR), genetic colocalization, immune cell-type enrichment and phenome-wide association 

methods to investigate the effects of genetically predicted gene expression on 10 immune-

associated diseases and 4 cancer outcomes. Using whole blood derived estimates for regulatory 

variants from the eQTLGen consortium (n=31,684) we constructed genetic risk scores for 

10,104 genes. Applying the inverse-variance weighted MR method transcriptome-wide whilst 

accounting for linkage disequilibrium structure identified 664 unique genes with evidence of a 

genetically predicted effect on at least one disease outcome (P<4.81 x10-5). We next undertook 

genetic colocalization to investigate cell-type specific effects at these loci using gene expression 

data derived from 18 types of immune cells. This highlighted many cell-type dependent effects, 

such as PRKCQ expression and asthma risk (posterior probability=0.998), which was T-cell 

specific. Phenome-wide analyses on 311 complex traits and endpoints allowed us to explore 

shared genetic architecture and prioritize key drivers of disease risk, such as CASP10 which 

provided evidence of an effect on 7 cancer-related outcomes. Our atlas of results can be used 

to characterize known and novel loci in immune-associated disease and cancer susceptibility, 

both in terms elucidating cell-type dependent effects as well as dissecting shared disease 

pathways and pervasive pleiotropy. As an exemplar, we have highlighted several key findings in 

this study, although similar evaluations can be conducted using our interactive web platform.  
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Introduction 

The widespread application of genome-wide association studies (GWAS) has had profound 

success in detecting robust associations between genetic variants and complex disease 

outcomes. This includes diseases with a large immunological basis, such as rheumatoid arthritis 

[MIM 180300], inflammatory bowel disease [MIM 266600] and asthma [MIM 600807]. 1 The 

immune system also plays a crucial role in the pathogenesis of other types of disease, such as 

cancer outcomes. 2 There is now extensive interest in the field of genetic epidemiology in 

integrating findings from GWAS with regulatory molecular datasets. 3-5 In doing so, studies aim 

to bring to light the underlying functional and biological mechanisms responsible for GWAS 

signals and translate findings for disease prevention purposes. 

 

A challenge encountered by these endeavours is obtaining molecular trait datasets derived 

from tissues and cell-types relevant to the disease being studied in sufficient samples. A recent 

review highlights this by comparing the differences between affected and unaffected tissues for 

heritable traits and diseases, 6 demonstrating that molecular traits such as gene expression can 

have elevated or even exclusive expression in disease-relevant tissue types. For the majority of 

disease outcomes, this diminishes the utility of whole blood-derived datasets, which to date 

typically have by far the largest sample sizes on molecular traits due to their non-invasive 

accessibility. Notable exceptions to this are diseases with a large immune basis, given that 

whole blood is responsible for carrying innate and adaptive immune cells through the body 

from the lymphatic system to the site of injury or infection. 7 As such, initial analyses of 

transcriptomic datasets derived from whole blood provides optimal statistical power to detect 

association signals for immune-associated diseases 8; 9, which can then be dissected and 

characterized in detail using cell-type specific data. Doing so can help develop mechanistic 

insight into the cell-types which play a role on the causal pathway from genetic variants to 

immune-associated diseases and cancer outcomes. 10  

 

Furthermore, diseases with an immune component and types of cancer are known to have 

shared genetic architecture. 11 For example, previous work in this area has identified evidence 
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of shared genetic architecture between Crohn’s disease [MIM 266600] and multiple sclerosis 

[MIM 126200], 12 across several paediatric autoimmune diseases, 13 and also amongst various 

cancer endpoints due to immune-associated mechanisms. 14 Moreover, genetic evidence of 

horizontal pleiotropy at loci which encode a therapeutic target may be informative in terms of 

flagging potential adverse effects unrelated to immune-associated and cancer outcomes, which 

is particularly attractive given the increasing interest in using human genetics to help validate 

drug targets. 15 Taken together, these findings highlight the importance of conducting 

evaluations of pervasive pleiotropy at immune disease and cancer susceptibility loci, to 

prioritise candidate genes where in-depth follow up analyses would be worthwhile. 

 

In this study, we constructed an analytical pipeline to systematically triangulate evidence from 

Mendelian randomization and genetic colocalization methods to evaluate the effects of 

genetically predicted gene expression for 10,104 genes on 14 immune-associated disease and 

cancer outcomes. MR is a form instrumental variable analysis which uses genetic variants to 

infer causal relationships between exposures and disease outcomes, which are more robust to 

confounding and reverse causation given that they are inherited at birth. 16; 17 Although MR 

studies of molecular traits have typically been limited to single instrument analyses in the past, 

regulatory variants derived from whole blood by the eQTLGen consortium (n=31,684) provide 

an opportunity to harness multiple variants in an MR framework whilst accounting for their 

linkage disequilibrium (LD) structure. 18 We then explored whether putative genetic effects may 

be cell-type specific using expression data from 18 different immune-cell regulatory datasets 

from the BLUEPRINT consortium and DICE database using genetic colocalization. 19; 20 Finally, 

we undertook a phenome-wide association study (PheWAS) of genes highlighted by these 

analyses to assess their shared architecture and pathways using data on a total of 311 curated 

complex traits and outcomes. A schematic diagram of this analysis pipeline can be found in 

Figure 1.  
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Material and Methods 

The eQTLGen consortium 

We obtained expression quantitative trait loci (eQTL) data derived from 31,684 blood and 

peripheral blood mononuclear cell samples using data from 37 studies as part of the eQTLGen 

consortium. Detailed methods have been described previously 21. In this study, we only selected 

eQTL for analyses that were located within 100 kilobases (kbs) either side of a protein-coding 

gene region whose expression they were robustly associated with (based on P<5x10-8). This was 

to mitigate the likelihood that instruments for our MR analyses were influencing disease 

outcomes via alternate biological pathways due to the co-expression of neighbouring genes. 

 

We constructed genetic scores using weakly independent cis-regulatory variants based on an 

r2<0.1. LD calculations were based on a reference panel of 10,000 unrelated UK Biobank 

participants of European descent. 22-24 Genetic scores were only analysed where we had at least 

2 weakly independent eQTL to reduce the likelihood of false positive effects due to only being 

able to instrument genes using a single variant.  

 

Immune-cell type specific datasets 

We obtained immune-cell specific eQTL data from the BLUEPRINT and DICE projects, 19; 20 eQTL 

from 3 cell types were available from BLUEPRINT (monocytes, neutrophils, and t-cells) and a 

further 15 from DICE (a full list of these cell types can be found in Table S1). The sample sizes 

for these immune-cell type specific datasets ranged from n=89 to n=194, meaning that using 

these data for MR would typically be restricted to single SNP analyses. As such, we used these 

datasets specifically for follow up analyses of genetically predicted effects identified in whole 

blood to evaluate cell-type specificity.  

 

Complex trait and disease outcome datasets 

Our primary analyses were based on 14 disease outcomes consisting of 10 immune-associated 

diseases and 4 types of cancer. These were asthma, breast cancer [MIM 114480], Crohn’s 
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disease, eczema [MIM 603165], hypothyroidism [608175], inflammatory bowel disease, 

multiple sclerosis, ovarian cancer [MIM 167000], prostate cancer [MIM 176807], rheumatoid 

arthritis, systemic lupus erythematosus [MIM 152700], total number of cancers, type 1 diabetes 

[MIM 222100], and ulcerative colitis [MIM 266600]. 25-33 Full details on the GWAS for each of 

these outcomes can be found in Tables S2 & S3. These disease outcomes were selected due to 

their studies being undertaken on large sample sizes (i.e., n > 10,000) and also those providing 

access to the full summary statistics which were necessary to conduct MR. Although this meant 

that we were unable to analyse other endpoints where our systematic pipeline would be of 

value (e.g., leukaemia), large-scale GWAS data of these outcomes may become accessible for 

future work.  

 

All other GWAS summary statistics analysed in our PheWAS were accessed through the IEU 

Open GWAS project. 34 Estimates were extracted using the ‘TwoSampleMR’ R package. 35 In 

total, 297 traits and outcomes were included which related to broad range of outcomes from 

across the complex disease spectrum (Table S4). These endpoints were based on a curated list 

of outcomes analysed previously using an MR framework. 5 The 14 endpoints from our primary 

analysis were also included in these analyses for comparative purposes meaning overall 311 

outcomes were analysed.  

 

Statistical analysis  

We used the ‘MendelianRandomization’ R package to undertake two-sample MR analyses using 

the inverse-variance weighted (IVW) method accounting for correlation structure between 

instruments. 23; 36 We firstly applied this approach transcriptome-wide on each of the 14 

immune and cancer-related outcomes in turn to highlight genes whose expression provided 

strong evidence of a genetically predicted effect. As a heuristic, we used a Bonferroni corrected 

threshold based on the number of genes analysed across the transcriptome for each outcome 

(i.e., P<0.05/number of genes analysed). For results that survived Bonferroni corrections, we 

performed a leave-one-out MR analysis. This involved repeating analyses after removing each 

SNP in turn with replacement and allowed us to determine whether any individual SNPs were 
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driving genetically predicted effects. Results for genes where the largest leave-one-out p value 

still survived the heuristic Bonferroni corrected threshold used in the initial analysis were 

considered to be the most robust to individual SNPs driving genetically predicted effects. 

  

Next, we conducted genetic colocalization analyses using the ‘coloc’ R package with default 

parameters. This allowed us to investigate the cell-type specificity of putative effects at each 

locus robust to Bonferroni corrections in the previous analysis. We also only carried forward 

genes located outside the human leukocyte antigen (HLA) region of the genome due to the 

extensive LD structure at HLA which can results in false positive findings when using techniques 

such as genetic colocalization. In our colocalization analysis, we evaluated whether there was a 

causal variant at each locus responsible for conferring risk of disease that was also driving 

variation in gene expression derived from each of the 18 cell-type specific datasets in turn. A 

posterior probability (PPA) threshold ≥ 0.80 was used to indicate evidence of a shared a 

common causal variant between disease outcome and cell-type specific gene expression. 

 

We applied MR only to genes with at least 2 instruments to mitigate false positive results which 

single SNP MR of molecular traits may be particularly prone to due to co-expression between 

neighbouring genes. Furthermore, this allowed us to harness the power of the large-scale 

whole blood dataset from eQTLGen (n=31,684) which provided an unprecedented number of 

eQTL for MR analyses. Genetic colocalization was then selected as a method to investigate the 

cell-type specificity of findings given that the immune cell datasets analysed were derived 

based on comparatively modest sample sizes (n=89 to 194). As such, only a very small 

proportion of genes would have had at least 2 instruments for MR analyses based on our 

criteria of P<5x10-8 and r2<0.1 (mean=~141 genes across the 18 immune-cell types, Table S5). 

Conversely, a much larger proportion of genes are likely to satisfy the single variant assumption 

of the coloc method using these datasets, particularly based on default Bayesian prior 

distributions. Moreover, this overall approach allowed us to adopt the principles of 

triangulation, whereby separate approaches (with different underlying assumptions) are 

applied to different datasets to investigate multiple lines of evidence. 37 We were therefore 
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able to corroborate findings from MR and colocalization in this study, which have different 

strengths and weaknesses, in order to provide evidence implicating a gene’s role in disease risk. 

 

Using the results from our genetic colocalization analysis, we applied a hypergeometric test to 

assess evidence of enrichment for cell-type specific effects across the genome for each disease 

outcome. The ‘phyper’ R package was used to perform enrichment analysis. 38 Background 

comparisons were based on the other loci identified by our MR analyses which did not provide 

evidence of colocalization with gene expression from the same cell-type. For immune-

associated disease outcomes we used other immune-associated disease loci for comparisons, 

and likewise used cancer loci for cancer outcome enrichment evaluations. 39 We considered a 

Bonferroni corrected threshold as robust evidence of enrichment in these analyses based on 

the 18 immune-cell types assessed for each outcome (i.e. P<0.05/18 = 2.78x10-3). 

 

Lastly, we performed a PheWAS using the IVW MR method accounting for local LD structure as 

before using eQTLGen data. However, this analysis was restricted to genes that survived 

Bonferroni corrections in the initial MR analysis based on the 14 immune- and cancer-related 

outcomes. We used a Bonferroni-corrected threshold based on the number of outcomes 

analysed in the PheWAS (i.e., P<0.05/311 = 1.61x10-4) to identify evidence of genetically 

predicted effects on an outcome. However, as with the other thresholds applied in this study, 

this cut-off was used as a heuristic to highlight noteworthy findings and users of our web atlas 

may wish to apply more stringent or lenient thresholds as they see fit.  

 

Comparison with previous findings from transcriptome-wide association studies 

We assessed the reliability of our initial MR analysis by comparing results reported by 

transcriptome-wide association studies (TWAS) of whole blood eQTL datasets from TWAS-Hub . 

40 These were based on the Netherlands Twins Register (NTR) (n=1247) and, 41 GTEx whole 

blood (n=338) datasets. 42 Only 10 of the 14 primary outcomes were compared in this analysis 

as inflammatory bowel disease, multiple sclerosis, number of self-reported cancers and type 1 

diabetes were not available in TWAS-Hub. We only compared genes which were robust to 
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Bonferroni corrections (i.e., P<0.05/number of genes analysed) from both our analyses and 

those from TWAS-Hub. 

 

All analyses were undertaken using R version 3.6.1 and 3.6.2. Manhattan and PheWAS plots 

were generated using the R package ‘ggplot2’, 43 locus zoom plots using the code adapted from 

the ‘gassocplot’ package and enrichment plots using the ‘pheatmap’ package. We also 

developed a web application to disseminate findings for all results generated using our 

analytical pipeline using the ‘shiny’ R package. 
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Results 

An integrative Mendelian randomization analysis of 14 immune-associated diseases and 

cancer outcomes using multiple cis-regulatory instruments 

Constructed genetic scores using weakly independent cis-regulatory variants identified 10,104 

genes that were eligible for analysis using the IVW MR method. (Table S6) In total, 734 genes 

provided evidence of a genetically predicted effect on at least 1 of the 14 immune- and cancer-

related outcomes after accounting for multiple testing using the Bonferroni corrected threshold 

for each outcome separately (ranging from P=4.09x10-6 to 4.81x10-5) (Tables S7 & S8). Of these, 

664 were located outside the HLA region of the genome and were carried forward for 

subsequent analyses. Figure 2 illustrates various exemplar signals identified for 4 outcomes: 

asthma, hypothyroidism, breast cancer and inflammatory bowel disease. Full results for all 14 

outcomes can be investigated using the interactive web browser (see “Web Resources” for 

URL). 

 

Amongst these results were genetically predicted effects at various well-established loci known 

to confer risk of autoimmune disease, including CARD9 [MIM 607212] and STAT3 [MIM 102582] 

(P=1.03x10-15 and P=1.77x10-8 respectively with inflammatory bowel disease), 44 ORMDL3 [MIM 

610075] associated with asthma (P=4.82x10-10), 45 and cytokines such as interleukin-24 (IL24 

[MIM 604136]) and interleukin-2 receptor alpha chain (IL2RA [MIM 147730]) which were 

associated with systemic lupus erythematosus and asthma respectively (P=1.28x10-6 and 

P=1.34x10-6). 46; 47 A number of novel or emerging loci were also identified for autoimmune 

disease outcomes, such as RORC [MIM 602943], a transcription factor predominantly expressed 

in T helper 17 cells 48 which was most strongly associated with asthma risk (P=4.13x10-27), as 

well as CCDC88B [MIM 611205] (P=1.07x10-6 and P=1.15x10-5 with hypothyroidism/myxoedema 

and multiple sclerosis respectively). These findings were additionally supported by evidence 

from our leave-one-out sensitivity analysis to highlight signals which were not dependent on 

single cis-instruments (Table S9). 
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Similarly, there were various findings highlighted by this approach at known cancer loci, such as 

CASP10 [MIM 601762] (P=1.82x10-17 for prostate cancer), 49 and FAM175A [MIM 611143] 

(P=1.56x10-16 for breast cancer), 50 as well as genes that have been identified in relation to a 

number of cancers including CDKN2A [MIM 600160] (P= 5.08 x10-14 with breast cancer), IRF1 

[MIM 147575] (P=7.40x10-7 with breast cancer) and IGF2 [MIM 147470] (P=1.67x10-6 with 

prostate cancer). 51 There were also loci highlighted by our analyses on cancer outcomes with 

limited previous evidence of an association with cancer outcomes based on the current 

literature and may therefore be worthwhile prioritising for further evaluation, such as PSMD8 

[MIM 617844] (P=5.60x10-9 with prostate cancer) and TTC16 (P=1.10x10-9 with prostate cancer). 

 

Comparing our results with those reported by TWAS-Hub found that a large proportion of 

genes robust to Bonferroni correction using whole blood eQTL datasets from this resource were 

replicated by our analyses (Table S10) (NTR: 55 out of 157, GTEx: 42 out of 111). However, our 

analyses also highlighted a large number of genes highlighted robust to multiple testing 

corrections in comparison to TWAS-Hub, which is likely predominantly due to using an eQTL 

dataset derived from a substantially larger sample. For instance, for Crohn’s disease, while we 

replicated 22 genes identified in TWAS-Hub, there were 40 genes with evidence of a genetically 

predicted effect in our analysis which did not meet Bonferroni corrections (NTR: P< 2.07x10-5, 

GTEx: P<2.49x10-5) in TWAS-Hub.  

 

Identifying immune-cell specific effects at immune-associated and cancer associated loci 

We performed genetic colocalization at each of the 664 non-HLA loci identified in the previous 

analysis using 14 immune-cell datasets from the DICE database and 3 immune cell-type 

datasets from the BLUEPRINT consortium. In total, 531 genetic effects colocalised across the 

immune-associated disease and cancer outcomes with immune-cell type expression (based on 

PPA≥0.80), which may provide mechanistic insight into the disease pathogenesis at these loci 

Table S11.  

 

For example, we identified strong evidence of colocalization between PRKCQ [MIM 600448] 

expression in T cells and asthma risk (PPA=0.998), whereas there was very weak evidence of 
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colocalization when analysing any of the other immune cell-types (Figure 3a, Table S12). PRKCQ 

has been previously implicated in allergic disease risk and is involved in T cell activation. 52 

There was also evidence of colocalization between KSR1 [MIM 601132] expression and Crohn’s 

disease in classical monocytes (PPA=0.998) (Figure 3b, Table S12), which is known to be an 

important cell-type in relation to Crohn’s disease. 53 Amongst cancer loci, there was evidence 

for colocalization between prostate cancer and C2orf43 [MIM 613570] in non-classic monocytes 

(PPA=0.887)) (Figure 3c, Table S12). C2orf43 has been found to be expressed in monocytes and 

the loss of this gene has previously been associated with risk of prostate cancer. 54; 55 All other 

effects with evidence of genetic colocalization are shown in Table S11 as well as on our web 

browser where effects across all cell-type can be compared visually.  

 

Enrichment of immune-cell types amongst disease-associated loci 

We performed enrichment analyses using results from the colocalization analyses to investigate 

whether effects in certain immune-cell types were overrepresented amongst each outcome. 

We did not include the number of reported cancers results in the background set as there was 

no strong evidence of colocalization identified in the previous analysis for any gene using this 

outcome. This may reflect that associated loci are more likely to be involved in risk factors for 

cancer rather than being directly involved in cancer pathogenesis themselves.  

 

As illustrated in Figure 4, we identified evidence of enrichment for various cell-types amongst 

rheumatoid arthritis loci and in particular for activated naïve CD8 T cells (P= 1.79 x10-4). 

Increased levels of these cells have been previously observed in the peripheral blood of 

individuals with rheumatoid arthritis. 56 Monocytes were enriched amongst multiple sclerosis 

loci (P= 6.34 x10-4) which have previously been implicated in the pathology of this disease. 57 

The strongest evidence of enrichment for breast cancer loci was for regulatory memory T cells 

(P= 0.018); which have previously been reported to restrict anti-tumour immune mechanisms, 

although this finding was not robust to multiple testing corrections. 58 (Tables S13 & S14) 
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Conducting phenome-wide association studies to explore shared genetic architecture 

and elucidate pleiotropic loci 

For the 664 non-HLA genes identified in our primary analysis using whole blood, we repeated 

analyses using the IVW MR analysis accounting for LD structure but on a set of 311 curated 

traits and outcomes. This phenome-wide analysis allowed us to highlight loci where there is 

evidence of shared genetic architecture amongst various immune-associated and cancer 

outcomes. For instance, IL24, which encodes an interleukin cytokine involved in promoting the 

development and differentiation of T, B, and hematopoietic cells, and plays an essential role in 

both innate and adaptive immunity, 59 provided evidence of an effect on multiple autoimmune 

outcomes (Figure 5a). Similarly, analyses of CASP10, which encodes caspase 10 and is a known 

cancer susceptibility locus, identified genetically predicted effects on 7 different cancer disease 

outcomes. 49 (Figure 5b) There was also evidence of shared architecture at emerging immune 

disease loci, such as CCDC88B, which has recently been implicated in the pathogenesis of 

inflammatory bowel disease. 60  

 

Along with evaluations of loci with shared architecture for immune-associated and cancer 

outcomes, our atlas of phenome-wide results may be valuable in highlighting genes with more 

specific effects on disease outcomes. For example, PRKCQ was highlighted by our cell-type 

analysis as having a T-cell specific mediated effect on asthma risk (PPA=0.998), and only 

provided robust evidence of an effect on asthma as discovered in our initial analysis based on 

the number of tests undertaken (P<1.61x10-4=0.05/311 tests) (Figure 5c). Similar evaluations of 

pleiotropy may have translatable benefit for drug target prioritization efforts. For instance, 

TPM3 [MIM 191030] has recently been postulated as a potential therapeutic target for cancer 

therapy. 61 Although our cell-type analysis detected evidence of a monocyte-specific role of 

TPM3 in prostate cancer risk (PPA=0.821), phenome-wide results indicated that it may 

influence risk of outcomes such as hypertension [MIM 145500] (P=1.49x10-7) and angina 

(P=2.81x10-9) with the opposite direction of effect. These results therefore suggest that loci 

which exhibit horizontal pleiotropic effects such as TPM3 should be deprioritised as therapeutic 
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targets due to putative adverse effects. Results depicted in Figure 5 can also be found in Tables 

S15-S18.  

 

Discussion 

In this study, we have performed a transcriptome-wide Mendelian randomization study to 

investigate the genetically predicted effects of gene expression on risk of 10 immune-

associated diseases and 4 cancer outcomes. The results of this investigation provide a 

comprehensive atlas of genetic effects which highlight both known and novel susceptibility loci 

for these outcomes. We conducted in-depth analyses of these loci using genetic colocalization 

and phenome-wide MR to further characterize their role in disease, both in terms of developing 

mechanistic insight into cell-type dependent effects as well as elucidating shared biological 

pathways. As exemplar, we have highlighted several key findings in this manuscript, however all 

our results can be investigated interactively (see “Web Resources” for URL). We envisage this 

atlas of results will benefit future research endeavours interested in dissecting the molecular 

drivers of immune-associated disease and cancer outcomes, as well as help guide functional 

studies to validate and strengthen evidence for loci highlighted in our study. 

 

Integrating molecular regulatory signatures derived from whole blood with findings from GWAS 

has been considered a limitation for the majority of complex disease outcomes studied to date. 

62 However, it presents a viable strategy for immune system-related diseases given that whole 

blood is responsible for carrying innate and adaptive immune cells through the body from the 

lymphatic system to the site of injury or infection 7. This has allowed us to harness the 

unparalleled sample size of transcriptome-wide data made available by the eQTLGen 

consortium. As a consequence, we were able to instrument genes using multiple regulatory 

variants and address another conventional limitation of previous studies in the paradigm which 

have typically been confined to single-SNP MR analyses. 5  

 

Amongst these findings are many previously reported autoimmune disease and cancer genes. 

For example, CARD9, identified as having a genetically predicted effect on Crohn’s disease and 
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ulcerative colitis, has previously been reported to confer risk of both these forms of 

inflammatory bowel disease. 63 Additionally, it is known to be involved in innate immunity and 

inflammation, as well as being specifically expressed in myeloid cells. 64 Likewise, STAT3 has 

been identified in relation to inflammatory bowel diseases and type 1 diabetes and is thought 

to be involved in autoimmunity both due to its role as a mediator on the IL-6 signalling pathway 

and as a transcription factor in the differentiation of Th1 cells. 65; 66 Amongst established cancer 

loci was CTBP1 [MIM 602618] which we identified evidence as having a genetically predicted 

effect on breast and prostate cancer risk. CTBP1 is an oncogenic transcriptional co-regulator 

which has been shown to be overexpressed in a number of cancers. It functions by regulating 

the expression of tumour suppressers and oncogenic factors, which has led to its identification 

as a potential therapeutic target. 67  

 

There were also less well-established loci identified in the MR analysis. RORC was highlighted in 

relation to inflammatory bowel diseases, eczema, and asthma. It is a transcription factor of IL-

17 [MIM 603149] expression and Th17 cells, which are key in the immune system and has been 

suggested as a potential target for autoimmune diseases. 68 IL-17 is a pro inflammatory cytokine 

which recruits immune cells to the site of inflammation and its overproduction has been 

reported to lead to inflammation and autoimmune conditions. 69; 70 CCDC88B provided evidence 

of a genetically predicted effect on hypothyroidism/myxoedema and multiple sclerosis, which is 

a gene previously shown to be highly expression in immune cells. Furthermore, it has been 

identified as an important regulator of T cell function and previously implicated to play a role in 

inflammation pathways. 71  

 

Applying genetic colocalization revealed many cell-type dependent effects in our study, which 

may help develop understanding into the pathways and mechanisms behind these disease 

outcomes. 72 For example, there was strong evidence of colocalization between CARD9 

expression and inflammatory bowel diseases in monocytes (PPA=0.986) and neutrophils 

(PPA=0.986). The effect of KSR1 expression on risk of Crohn’s disease colocalized with data 

from monocytes (PPA=0.998). KSR1, which encodes a kinase suppressor of Ras 1, has previously 
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been identified in relation to Crohn’s disease, 44 and blood monocytes have been previously 

reported to be elevated in individuals with this disease. 53  

 

PRKCQ, which provided evidence of a genetically predicted effect on asthma risk in our MR 

analysis, is a member for the protein kinase C family and encodes the enzyme protein kinase C 

theta which has an important role in the regulation of signalling pathways and the activation of 

T cells. Moreover, PRKCQ has been identified as having a crucial role in autoimmunity through T 

cell activation. 73; 74 Findings in this study provided evidence of genetic colocalization for this 

gene with asthma in T cells but none of the other immune cell types assessed, suggesting that 

PRKCQ’s role in conferring autoimmune disease risk may be confined to T cells. 52 C2orf43 was 

identified in relation to prostate cancer and provided evidence of colocalization for prostate 

cancer in monocytes and T cells. It has previously been shown that loss of C2orf43 may be 

associated with risk of prostate cancer, and is a gene found to be expressed in lysates of human 

monocytes and monocyte-derived macrophages. 55  

 

We found that the 531 effects which provided evidence of genetic colocalization using cell-type 

specific gene expression were enriched for certain disease outcomes. For instance, rheumatoid 

arthritis loci were enriched for evidence of genetic colocalization with gene expression derived 

from activated naïve CD8 T cells. Increased levels of these cells have been previously observed 

in the peripheral blood of individuals with rheumatoid arthritis. 56 It has also been suggested 

that CD8+ T cells have a role in the initiation and maintenance of rheumatoid arthritis. 75 

Colocalization evidence with gene expression from monocytes was enriched amongst multiple 

sclerosis loci, which have previously been implicated in the pathology of this disease by 

increasing levels of cytokines leading to increased cellular activation and proliferation, tissue 

damage and altered blood brain barrier. 57 

 

Our PheWAS analysis highlighted genes which are involved in conferring risk of multiple 

immune-associated disease outcomes, such as well-established autoimmune locus IL24. This 

gene is in the interleukin family of cytokines which are involved in signalling in the immune 
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system and regulating immune cells,46 IL24 has been identified as a key mediator for both pro-

inflammatory diseases and allergic disorders. 76 Similarly, CASP10 was identified in relation to 

various cancer outcomes in this analysis supporting previous findings from the literature. 49 

CASP10 encodes the enzyme caspase-10 which is a member of the caspase family which have a 

role in cell apoptosis. 77 This family of protease enzymes have been previously considered as 

potential therapeutic targets for cancer. 78  

 

There were also genes that provided evidence of genetically predicted effects on very few 

outcomes across the disease spectrum. For example, PRKCQ provided robust evidence of an 

effect on asthma, but no other outcomes assessed based on multiple testing corrections, and as 

previously mentioned this gene has been shown as important in asthma pathology. We also 

note that our PheWAS results may help elucidate pleiotropic loci which should be valuable for 

therapeutic validation endeavours. As an example, we demonstrate that previously postulated 

target TPM3 for cancer therapy had genetically predicted effects on various disease endpoints, 

some of which had the opposite direction of effect to lower cancer risk. Evidence of horizontal 

pleiotropy may be useful in terms of deprioritising drug targets, whereas those which appear to 

be more specifically associated with disease, such as PRKCQ, may be worthwhile prioritising and 

pursuing further. However, results from our genetic analysis are but one line of evidence to be 

used in conjunction with findings from other studies such as functional wet lab work.  

 

Although there various strengths to our study there are also limitations. Firstly, whilst the use 

of immune cell datasets and genetic colocalization allowed us to identify cell-type dependent 

effects in this study, the sample sizes used to derive these eQTL are modest in scale compared 

to GWAS and thus may not explain a large proportion of heritability. 79 Therefore, genetic 

effects which are not supported with colocalization evidence could be explained by low 

statistical power. Future datasets generated at scale once technologies become more feasible 

should facilitate more comprehensive evaluations of cell-type specific regulatory mechanisms. 

Moreover, larger sample sizes for immune cell specific datasets would allow a more robust 

investigation into whether results identified using whole blood are subject to molecular 
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pleiotropy (i.e. co-expression amongst neighbouring genes which can make pinpointing the 

causal gene at a locus challenging). Another limitation is horizontal pleiotropy, which may play a 

role in these results despite the support of colocalization and can be defined here as a causal 

variant influencing immune-cell expression and disease risk via two separate biological 

pathways. Finally, gene expression was not derived from disease related datasets and were 

mostly from “healthy” individuals. As such future work using genetic effects on gene expression 

derived from individuals diagnosed with immune-associated disease or cancer may potentially 

capture signatures not detected by our analyses. Lastly, our study was focused on cell-type 

dependent effects using immune-cell datasets, although investigating our results in conjunction 

with those from investigations into tissue specificity may facilitate further mechanistic insight. 5; 

72 

 

The results of this study provide a map of genetically predicted regulatory mechanisms that 

may influence disease outcomes with an immune basis. These findings should prove valuable 

for future studies to further characterize susceptibility loci and translate genetic evidence for 

disease prevention and treatment purposes. 
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Figure Titles and Legends 
 
Figure 1 - Outline of study workflow  

A schematic diagram portraying the analytical pipeline applied in this study. 

 
Figure 2 – Manhattan plots illustrating transcriptome-wide Mendelian randomization results 
Transcriptome-wide Mendelian randomization results for A) Asthma, B) Inflammatory bowel disease, C) Breast 
cancer and D) Hypothyroidism/myxoedema using genetically predicted gene expression from the eQTLGen 
consortium. Bonferroni corrected thresholds are indicated by the dotted line.  

 
Figure 3 – Locuszoom plots highlighting cell-type dependent effects  
Locuszoom plots illustrating colocalization between A) Asthma and PRKCQ expression in T cells, B) Crohn's disease 
and KSR1 expression in classical monocytes and C) Prostate cancer and C2orf43 expression in non-classical 
monocytes.  

 
Figure 4 – Heatmaps depicting evidence of enrichment for immune-cell types 
Heatmaps portraying evidence of over-representation amongst genetic colocalization results for gene expression 
derived from immune-cell types and the 14 outcomes analysed in this study.  
 
Figure 5 - Phenome-wide association study results  
Phenome-wide association study (PheWAS) plots illustrating the genetically predicted effects of A) IL24, B) CASP10 
and C) PRKCQ expression using data from the eQTLGen consortium and 311 phenotypes. 


