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ARTICLE

Characterizing the Causal Pathway for Genetic
Variants Associated with Neurological Phenotypes
Using Human Brain-Derived Proteome Data

Nelson K. Kibinge,1 Caroline L. Relton,1 Tom R. Gaunt,1 and Tom G. Richardson1,*

Leveraging high-dimensionalmolecular datasets can help us developmechanistic insight into associations between genetic variants and

complex traits. In this study, we integrated human proteome data derived from brain tissue to evaluate whether targeted proteins pu-

tatively mediate the effects of genetic variants on seven neurological phenotypes (Alzheimer disease, amyotrophic lateral sclerosis,

depression, insomnia, intelligence, neuroticism, and schizophrenia). Applying the principles of Mendelian randomization (MR) system-

atically across the genome highlighted 43 effects between genetically predicted proteins derived from the dorsolateral prefrontal cortex

and these outcomes. Furthermore, genetic colocalization provided evidence that the same causal variant at 12 of these loci was respon-

sible for variation in both protein and neurological phenotype. This included genes such as DCC, which encodes the netrin-1 receptor

and has an important role in the development of the nervous system (p ¼ 4.293 10�11 with neuroticism), as well as SARM1, which has

been previously implicated in axonal degeneration (p ¼ 1.76 3 10�08 with amyotrophic lateral sclerosis). We additionally conducted a

phenome-wide MR study for each of these 12 genes to assess potential pleiotropic effects on 700 complex traits and diseases. Our find-

ings suggest that genes such as SNX32, which was initially associated with increased risk of Alzheimer disease, may potentially influence

other complex traits in the opposite direction. In contrast, genes such as CTSH (which was also associated with Alzheimer disease) and

SARM1maymake worthwhile therapeutic targets because they did not have genetically predicted effects on any of the other phenotypes

after correcting for multiple testing.
Introduction

The widespread application of genome-wide association

studies (GWAS) over the last decade has drastically

advanced the discovery of genetic variants associated

with complex traits and disease.1,2 However, the underly-

ing biological mechanisms responsible for the vast major-

ity of these effects have been challenging to decipher.3

Alterations to circulating protein levels are likely to reside

along the causal pathway between genetic variant and

phenotypic variation.4,5 This has led to recent studies char-

acterizing genetic variants associated with protein levels

(known as protein quantitative trait loci [pQTL]) by inte-

grating their effects on traits with results from GWAS.6–10

Furthermore, findings from these endeavors can be valu-

able for drug target prioritization, particularly given that

therapeutic targets with support from genetic association

studies are more likely to succeed in clinical trials.11,12

These estimates have recently been revised, suggesting

that support from human genetics can increase approval

rates for drugs targeting GWAS traits by over 2-fold.13

Circulating protein levels, as with other molecular traits

such as gene expression and epigenetic processes, are

known to vary depending on the tissue type they are inves-

tigated in.14–16 This has therefore been a limitation for pre-

vious studies using human pQTL data, which have typi-

cally been confined to plasma proteins derived from

whole blood.6,7 Although these data are more readily

accessible in larger samples, they may not necessarily cap-
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ture biological effects from tissue types that are more rele-

vant to the disease being studied. For example, it would be

expected that data derived from brain tissue would be the

most pertinent for characterizing genetic variants associ-

ated with neurological phenotypes.17 This is because, due

to their functionality in the brain, the underlying genes

responsible for these effects are likely to exert their influ-

ence on cognitive traits and psychiatric disorders.18,19

In this study, we have leveraged pQTL data derived from

human brain tissue through the use of the brainQTL

resource20 and findings from large-scale GWAS of seven

neurological phenotypes (Alzheimer disease, amyotrophic

lateral sclerosis, depression, insomnia, intelligence,

neuroticism, and schizophrenia) (Table S1).21–27 These ef-

fects were integrated using a Mendelian randomization

(MR) framework which harnesses genetic colocalization

to highlight loci where dorsolateral prefrontal cortex pro-

teins and neurological phenotypes are influenced by a

shared causal variant. We conducted in-depth evaluations

of proteins identified in this analysis by undertaking a phe-

nome-wide MR study to assess their association with 700

complex traits and diseases.
Material and Methods

Data Resources
All genetic effects onto brain-derived protein levels were down-

loaded from the brainQTL resource (see Web Resources). Further

details can be found in the brainQTL paper.20 In brief, genotype
tion Health Sciences, Bristol Medical School, University of Bristol, Oakfield
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and proteome data on 7,901 total proteins were available from 144

post-mortem samples from the Religious Orders Study (ROS) and

the Memory and Aging Project (MAP).28 Access to full datasets

from the ROS and MAP studies can be requested at the URL in

the Web Resources section. pQTL identification was restricted to

variants with a minor allele frequency of over 5% and which

resided within 100kbs of protein coding genes based on the

UCSC genome browser (build GRCh37/hg19).29

We obtained genome-wide summary statistics for seven pheno-

types by using findings from GWAS for which summary statistics

have been made available: Alzheimer disease,21 amyotrophic

lateral sclerosis,22 depression,23 insomnia,24 intelligence,25

neuroticism,26 and schizophrenia.27 More detailed information

on all GWAS datasets can be found in Table S1.
Statistical Analysis
Linkage disequilibrium (LD) clumping was undertaken to identify

independent pQTL for downstream analyses. This was achieved

using PLINK30 based on a r2 < 0.01 with a reference panel consist-

ing of 10,000 unrelated individuals from the UK Biobank study

who were of European descent.31,32 This reference panel was

selected because individuals from the ROS andMAP study were re-

ported to be of European descent.33 We generated F-statistics for

instruments as proposed previously by Bowden et al.:34

Fj ¼
g2
j

s2
Xj

where gj is the SNP-exposure association and sXj is the standard

deviation for the SNP-exposure association for variant j. Instru-

ments with an F-statistic > 15 were selected to reduce the likeli-

hood of weak instrument bias in downstream analyses.35

MR estimates were derived based on the Wald Ratio method36

using the ‘‘TwoSampleMR’’ package.37 Estimates were then filtered

based on a multiple testing threshold of p < 0.05/number of pro-

teins analyzed. Testing of seven neurological phenotypes was not

taken into account in this correction, and although some of these

share genetic architecture (e.g., schizophrenia and depressive

symptoms have previously been reported to have an LD score

regression coefficient of rG¼ 0.8238), it was important to reinforce

results surviving this cut-off with evidence of genetic colocaliza-

tion. We therefore carried forward the loci that survived our

correction threshold from the previous analysis, and we analyzed

them with the ‘‘coloc’’ R package39 and eCAVIAR method40 using

default parameters. Evidence of genetic colocalization was defined

as having either a posterior probability of association (PPA) > 0.8

from the coloc method or a colocalization posterior probability

(CLPP) > 0.01 for eCAVIAR (both of these were proposed by the

developers of these methods). Results that provide evidence based

on these parameters suggest that at these loci, brain-derived pro-

teins and neurological phenotypes share a common causal

variant.

We subsequently applied this analysis pipeline to 700 complex

traits and diseases (a full list of which are in Table S5) by using

the TwoSample MR package for any predicted effects which also

had evidence of genetic colocalization from the previous analysis.

These phenotypes were selected based on the following criteria:

(A) outcomes which provided evidence of heritability (based on

a heuristic Pheritability < 0.05) according to analyses undertaken

previously by the Neale Lab (see Web Resources) or (B) outcomes

from GWAS consortia based on previously defined criteria.41 Spe-

cifically, this included outcomes analyzed by GWAS studies that
886 The American Journal of Human Genetics 106, 885–892, June 4,
reported betas, standard error, and effect alleles for over 100,000

genetic variants and that were undertaken in a European popula-

tion of over 1,000 individuals.

We also performed additional analyses for SARM1 and CTSH, for

which our initial analysis did not provide evidence of any putative

side effects based on Bonferroni corrections. This was undertaken

by comparing the estimates from the analysis of these targets on

the 700 outcomes with 500 randomly selected pQTL from our

initial sample. We then ranked MR effect estimates and calculated

permutated p values based on the rank of SARM1 and CTSH effects

compared to those of the other 500 proteins. Any effects which

provided evidence based on Ppermuted < 0.05 were further

subject to the same genetic colocalization analysis as previously

undertaken. Lastly, we investigated evidence of genetic colocaliza-

tion between pQTL and expression quantitative trait loci (eQTL),

also derived from brain tissue, based on analyses by Qi et al.

(n ¼ 1,194).17
Results

A Proteome-wide Mendelian Randomization Study of

Neurological Traits and Psychiatric Disorders Using

Brain-Derived Data

Applying our selection critieria to identify independent

pQTL resulted in 692 proteins which were eligible for anal-

ysis (Table S2). However, all of these proteins could only be

instrumented using a single pQTL, and therefore all MR es-

timates derived in this study are based on the Wald ratio

method.35 As sample sizes of protein data derived from dis-

ease-relevant tissues increase in the future, the MR frame-

work proposed here has the capacity to harness multiple

genetic instruments in order to investigate genetically pre-

dicted effects.

We systematically applied the principles of MR to

generate effect estimates for each of the 692 proteins on

each of the seven neurological phenotypes in turn. This

identified 43 genetically predicted effects based on a mul-

tiple testing threshold of p < 7.23x10�05 (i.e., 0.05/692

proteins) (Table S3). To support evidence of an effect be-

tween proteins and outcomes, we applied genetic colocal-

ization methods to discern whether the causal pQTL at

these loci was also responsible for variation in neurological

phenotypes.

This identified 12 loci which provided evidence of ge-

netic colocalization based on a PPA > 0.8 for the coloc

method or a CLPP > 0.01 for eCAVIAR results (Table S4).

Each of these effects has been highlighted on the Manhat-

tan plot in Figure 1. A flowchart illustrating the overall

analysis pipeline applied in this study can be found in

Figure S1.

Genetic Colocalization Helps Develop Insight at

Genome-wide Association Loci and Highlights

Potentially Novel Signals

Amongst the results with evidence of genetic colocaliza-

tion were GWAS loci which harbor genes thought to

be involved in neurological functionality. For example,

the DCC locus, which was associated with neuroticism
2020



Figure 1. A Manhattan Plot to Highlight Genetically Predicted Effects Based on Mendelian Randomization and Genetic Colocaliza-
tion Analyses on Neurological Phenotypes
Points correspond to the�log10 p values that reflect genetically predicted effects between protein quantitative trait loci and neurological
phenotypes. The red dashed line indicates the multiple testing correction applied in analyses (p¼ 0.05/692¼ 7.233 10�05). Effects that
surpassed this threshold were only included in this plot if they also provided evidence of genetic colocalization, and these effects are
colored based on their associated traits.
risk in our analysis (p¼ 4.293 10�11), encodes the netrin-1

receptor, which has been reported to play a role in

the development of the nervous system. Similarly,

SARM1 was associated with amyotrophic lateral sclerosis

risk (p ¼ 1.76 3 10�08) and has been previously reported

to influence axonal degeneration.42 Integrating brain-

derived protein data at these GWAS loci can therefore pro-

vide insight into the biological pathway by which the un-

derlying causal variants influence these neurological

phenotypes.

In contrast, other loci highlighted by our findings are

putatively novel trait-associated variants that have not

yet reached genome-wide evidence thresholds (i.e., p <

5 3 10�08). As such, evidence of genetic colocalization

with pQTL derived from a tissue type relevant to these phe-

notypes can be valuable in terms of prioritizing loci that

are yet to be uncovered by GWAS. Two examples of this

include FLOT2 (p¼ 3.973 10�05 with intelligence), which

encodes the neuronal signaling factor flotillin-2, and

SIDT1 (p¼ 1.343 10�05 with insomnia), which is a dsRNA

transporter. Figure 2 illustrates evidence of colocalization

at both of these loci with their respective neurological phe-

notypes and dorsolateral prefrontal cortex proteins.

Whereas these signals are likely to be uncovered by

GWAS once sample sizes increase, evidence that they co-

localize with disease-relevant protein data may shed light

on the causative pathway responsible for these signals.

We postulate that future endeavors adopting a similar

approach but using larger omic datasets will possess

increased power to elucidate putatively novel findings.

Prioritizing Therapeutic Targets by Undertaking a

Phenome-wide Mendelian Randomization Study

For each of the 12 loci highlighted by our initial anal-

ysis, we conducted a phenome-wide MR analysis to
The Ame
evaluate putative pleiotropic effects on 700 complex

traits and diseases (Table S5). Based on multiple testing

comparisons (i.e., p < 0.05/700 ¼ 7.14 3 10�05), along

with the same genetic colocalization thresholds used

previously, there was evidence of pleiotropy at various

loci. For example, based on these criteria, the lead

pQTL at SNX32 colocalized with 12 different pheno-

types along with Alzheimer disease in the initial anal-

ysis (with p ¼ 1.68 3 10�05). As depicted in

Figure 3A, therapeutically targeting this gene to reduce

risk of Alzheimer disease is genetically predicted to in-

fluence other outcomes in the opposite direction, such

as HDL cholesterol levels (p ¼ 3.14 3 10�05) and body

fat percentage (p ¼ 2.51 3 10�05). Further evaluations

of this target are necessary to discern whether increased

genetic liability toward Alzheimer disease risk is respon-

sible for these predicted effects (e.g., lower adiposity).

Alternatively, genetic variation at this locus may influ-

ence these outcomes separately via alternate biological

pathways (also known as ‘‘horizontal pleiotropy’’),

which may make SNX32 less attractive as a therapeutic

target.

In contrast, there were several genes which did not pro-

vide evidence of pleiotropy based on this analysis. For

instance, the lead pQTL for SARM1, which had an effect

on amyotrophic lateral sclerosis risk in the initial analysis

(p ¼ 1.76 3 10�08), did not provide evidence of an effect

with any of the 700 outcomes assessed based on multiple

testing corrections (Figure 3B). We further explored evi-

dence of potential side effects for SARM1 by comparing

the distribution of its MR estimates on all 700 traits with

those of 500 randomly selected pQTL. The strongest

evidence for a secondary effect potentially overlooked

by Bonferroni corrections was on coronary artery disease

(Ppermutation ¼ 0.004). However, this effect was not
rican Journal of Human Genetics 106, 885–892, June 4, 2020 887



Figure 2. Locuszoom Plots to Illustrate Evidence of Genetic Colocalization between Proteins and Neurological Phenotypes
Regional�log10 p values at the FLOT2 locus on (A) flottilin-2 levels and (B) intelligence and also at the SIDT1 locus on (C) SIDT1 protein
levels and (D) insomnia.
supported by evidence of colocalization (PPA ¼ 12.7% and

CLPP ¼ 2.92 3 10�04), and this effect had an FDR of 0.06.

Additionally, the only effect surviving Bonferroni correc-

tions for CTSH, which encodes the cathepsin H protein,

were on standing and sitting height (p ¼ 4.28 3 10�05

and p ¼ 1.49 3 10�05 respectively). However, these effects

were not supported by evidence of genetic colocalization.

Examples such as SARM1 and CTSH should therefore be

prioritized as worthwhile candidates for therapeutic inter-

vention, given that a lack of pleiotropic effects from this

analysis using human genetics supports their safety and

efficacy.
Discussion

We have conducted a study to characterize genetic variants

associated with neurological phenotypes by harnessing

brain-derived protein data. Under the principles of MR,

we identified 43 genetically predicted effects across the

genome, and this suggested that there may be a shared ge-

netic architecture between neurological phenotypes and

the subset of proteins studied. Applying two different ge-

netic colocalization techniques provided evidence that ef-
888 The American Journal of Human Genetics 106, 885–892, June 4,
fects at 12 of these loci were driven by a common causal

variant. We next undertook a phenome-wide association

study for each of these 12 proteins by applying this

approach systematically to 700 complex traits and disease

endpoints. Doing so elucidated pleiotropic proteins associ-

ated with various outcomes, along with protein targets

associated more specifically with their corresponding

neurological phenotype as identified in our initial analysis.

The influx of high-dimensional datasets concerning

intermediate phenotypes provides an exceptional oppor-

tunity to unravel the biological mechanisms responsible

for GWAS signals.43 The tissue type used to capture

these molecular signatures has been shown to play an

important role in such endeavors.44 For instance, previous

comparisons of quantitative trait loci associated with the

same gene target identified a correlation of r2 ¼ 0.70 be-

tween brain and whole blood.17 While this suggests that

blood may act as a valid proxy for brain tissue the majority

of the time, there may be effects that would potentially be

overlooked by not using the most pertinent tissue type for

the investigated GWAS trait. As an example of this, the

fine-mapped pQTL for ERLIN1 in this study shows no evi-

dence on an effect on this protein in whole blood based on

the most comprehensive plasma protein QTL analysis to
2020



Figure 3. Phenome-wide Association
Plots for (A) SNX32 and (B) SARM1 to
Investigate Pleiotropic Effects
Each point on these plots corresponds to
the �log10 p values derived using the
Wald ratio, which are clustered and colored
based on the subcategory of each trait and
oriented to reflect the direction of effect
with each respective protein. Red dashed
lines correspond to the multiple testing
correction threshold of p < 0.5/700 ¼
7.14 3 10�05.
date by Sun et al.6 (rs11190393, p ¼ 0.92). In fact, the only

fine-mapped pQTL we were able to replicate using this data

was for CTSH (rs34593439), although this protein has yet

to be linked with Alzheimer disease in whole blood ana-

lyses based on evidence from the EpiGraphdb platform

(URL located in the Web Resources section).

Among the loci highlighted in our study are various

genes which have been previously reported to play a

role in brain-related activities. This includes DCC, which

is associated with neuroticism in our analyses (p ¼
4.29 3 10�11) and is responsible for expression of the

nectin-1 receptor. Nectin-1 has previously been impli-

cated in various neurological and psychiatric disorders,

including schizophrenia and depression.45 Similarly,

FLOT2, which was associated with intelligence (p ¼
3.97 3 10�05), encodes neuronal signaling factor flotil-

lin-2, and it has been linked previously with autism

and related disorders.46 Elsewhere, PSMB4, which en-

codes a member of the proteasome B-type family, was

associated with depression risk (p ¼ 2.36 3 10�05). Pro-

teasomes have been implicated previously in risk of

neurodegenerative disorders.47,48 These findings may

therefore help shed some light on the causal pathway be-

tween trait-associated genetic variants at these loci and

their respective phenotypes.
The American Journal of Human
Characterizing GWAS signals using

tissue-relevant data can also be valu-

able for translational purposes such

as prioritizing therapeutic targets. In

particular, SARM1 (p ¼ 1.76 3 10�08

with amyotrophic lateral sclerosis)

and CTSH (p ¼ 5.57 3 10�05 with Alz-

heimer disease) represent the most

promising candidates based on our

evaluations. This is because our phe-

nome-wide analyses did not detect

strong evidence of pleiotropic effects

on non-neurological traits, which

may foreshadow adverse side-effects

from targeting these genes or their

mechanism of action using therapeu-

tics. Evidence from the literature has

reported that genetic deletion of

SARM1 in mice can block pathological
axon degeneration.49,50 Therapeutically inhibiting SARM1

may therefore be a putatively viable strategy for treating

neurodegenerative diseases characterized by axon loss,

such as amyotrophic lateral sclerosis.42 CTSH has also pre-

viously been linked with Alzheimer disease, where its

expression in the temporal cortices of late-onset Alzheimer

patients was shown to be altered.51 Although our phe-

nome-wide association study included outcomes which

are not clinically relevant (e.g., height), the purpose of

this ‘‘hypothesis-free’’ analysis was to prioritize potential

targets based on overall pleiotropic effects. For example,

a target predicted to influence non-clinically relevant end-

points may still be more attractive than one linked only to

the target disease being evaluated. It is likely that the ma-

jority of therapeutic targets will result in some type of

unanticipated side effect, whichmeans that anyone assess-

ing this based on human genetics should primarily be con-

cerned with evaluating whether predicted adverse effects

outweigh any potential benefit.

We found, based on evaluations in the GTEx project

across 54 tissue types,52 that various loci highlighted in

our analyses were predominantly expressed in brain tissue

(Figures S2–S13). However, in our extended analyses based

on a previously meta-analyzed sample of 1,194 individ-

uals, only four of the 12 identified proteins provided
Genetics 106, 885–892, June 4, 2020 889



evidence of genetic colocalization with gene expression

(CTSH, KHK, PSMB4, and SNX32, Table S7). There could

be various reasons for this lack of agreement, which has

been reported previously by the authors of the brainQTL

resource,20 such as technical artifacts in assays. There

may also be biological explanations such as canalization,

the phenomenon used to describe the robustness of

phenotypic characteristics in the presence of abundant

genetic variation and environmental conditions.53,54

This lack of evidence for the eight proteins which did

not colocalize appeared to be due to the fact that their

lead pQTL were not also eQTL in the meta-analyzed data-

set. However, based on findings from the eQTLGen con-

sortium (n ¼ 31,684), we did find that 10 of the 12 fine-

mapped pQTL for these proteins are strongly associated

with their corresponding genes’ expression in whole

blood. The two exceptions were DCC and RLBP1, which

were not analyzed by eQTLGen, andGTEx evaluations sug-

gested that they may not be strongly expressed in whole

blood (Figures S4 and S10). As such, a higher proportion

of transcriptomic and proteomic signatures may colocalize

once sample sizes of brain-derived molecular datasets

increase.

This highlights the key limitation of our study, which

is the current sample size of accessible proteome-wide

data derived from brain tissue (n ¼ 144 from the

brainQTL resource). This limited the number of proteins

we were able to instrument using pQTL and also meant

we were confined to using single-pQTL instruments.

Furthermore, it reduced the overall statistical power of

the initial pQTL study, which had downstream implica-

tions for our colocalization analysis in terms of the num-

ber of signals which met conventional thresholds. Future

endeavors which continue to uncover the genetic archi-

tecture of the human proteome in disease-relevant tissue

types will improve our capability to reliably instrument

them under the principle of MR. This will also improve

the robustness of evidence from genetic colocalization

analyses.

We also found that the two genetic colocalization

techniques used in this study (the coloc and eCAVIAR

approaches) did not always provide corroborating evi-

dence. For example, the loci highlighted in Figure 2 were

identified only when using the eCAVIAR approach, despite

these plots providing graphical illustrations of genetic co-

localization to support findings. A possible explanation

for this is the sensitivity of prior distributions selected for

the coloc method, which therefore supports our decision

to apply multiple methods which make different assump-

tions about the underlying genetic architecture of a region.

However, although genetic colocalization can help support

evidence of causality by reducing the likelihood that LD

has influenced findings, it cannot rule out horizontal plei-

otropy. This is the phenomenon whereby two traits (e.g., a

circulating protein and neurological phenotype) are influ-

enced by the same causal variant but by via two indepen-

dent biological pathways. Functional follow-up work
890 The American Journal of Human Genetics 106, 885–892, June 4,
with the proteins highlighted in this work is therefore

necessary in order to robustly investigate this.

In conclusion, the findings from this study can help

elucidate the causal pathway for genetic variants associ-

ated with neurological phenotypes and also prioritize

candidate targets for therapeutic intervention. Future

studies which leverage increasingly large-scale molecular

datasets derived from disease-relevant tissues will continue

to develop insights into the mechanisms linking genetic

variation to complex traits and disease.
Supplemental Data

Supplemental Data can be found online athttps://doi.org/10.

1016/j.ajhg.2020.04.007.
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