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A B S T R A C T

Background: Developing insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is of critical importance to overcome the global pandemic caused by coronavirus disease 2019
(covid-19). In this study, we have applied Mendelian randomization (MR) to systematically evaluate the
effect of 10 cardiometabolic risk factors and genetic liability to lifetime smoking on 97 circulating host pro-
teins postulated to either interact or contribute to the maladaptive host response of SARS-CoV-2.
Methods: We applied the inverse variance weighted (IVW) approach and several robust MR methods in a two-
sample setting to systemically estimate the genetically predicted effect of each risk factor in turn on levels of
each circulating protein. Multivariable MR was conducted to simultaneously evaluate the effects of multiple risk
factors on the same protein.We also appliedMR using cis-regulatory variants at the genomic location responsible
for encoding these proteins to estimate whether their circulating levels may influence severe SARS-CoV-2.
Findings: In total, we identified evidence supporting 105 effects between risk factors and circulating proteins
which were robust to multiple testing corrections and sensitivity analyzes. For example, body mass index pro-
vided evidence of an effect on 23 circulating proteins with a variety of functions, such as inflammatory markers
c-reactive protein (IVW Beta=0.34 per standard deviation change, 95% CI=0.26 to 0.41, P = 2.19 £ 10�16) and
interleukin-1 receptor antagonist (IVW Beta=0.23, 95% CI=0.17 to 0.30, P = 9.04 £ 10�12). Further analyzes using
multivariable MR provided evidence that the effect of BMI on lowering immunoglobulin G, an antibody class
involved in protection from infection, is substantially mediated by raised triglycerides levels (IVW Beta=-0.18,
95% CI=-0.25 to -0.12, P = 2.32 £ 10�08, proportion mediated=44.1%). The strongest evidence that any of the cir-
culating proteins highlighted by our initial analysis influence severe SARS-CoV-2 was identified for soluble glyco-
protein 130 (odds ratio=1.81, 95% CI=1.25 to 2.62, P = 0.002), a signal transductor for interleukin-6 type cytokines
which are involved in inflammatory response. However, based on current case samples for severe SARS-CoV-2
we were unable to replicate findings in independent samples.
Interpretation: Our findings highlight several key proteins which are influenced by established exposures for
disease. Future research to determine whether these circulating proteins mediate environmental effects onto
risk of SARS-CoV-2 infection or covid-19 progression are warranted to help elucidate therapeutic strategies
for severe covid-19 disease.
Funding: The Medical Research Council, the Wellcome Trust, the British Heart Foundation and UK Research
and Innovation.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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Research in context

Evidence before this study
It remains unclear why certain individuals develop more severe

symptoms of coronavirus disease 19 (covid-19) compared to others.
However, increasingly findings from the literature suggest that estab-
lished cardiometabolic risk factors, such as body mass index and
smoking, influence the risk of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) which is caused by covid-19.

In this study, we used data from a resource involving genome-
wide association studies (GWAS) of 97 unique proteins which may
play a role in severe SARS-CoV-2 (available at https://omicscience.
org/apps/covidpgwas/). This enabled us to use genetic variation to
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Research in context

Evidence before this study

It remains unclear why certain individuals develop more severe
symptoms of coronavirus disease 19 (covid-19) compared to
others. However, increasingly findings from the literature sug-
gest that established cardiometabolic risk factors, such as body
mass index and smoking, influence the risk of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) which is
caused by covid-19.

In this study, we used data from a resource involving
genome-wide association studies (GWAS) of 97 unique proteins
which may play a role in severe SARS-CoV-2 (available at
https://omicscience.org/apps/covidpgwas/). This enabled us to
use genetic variation to estimate the effects of 10 cardiometa-
bolic risk factors on each of these proteins in turn using an
approach known as Mendelian randomization (MR). We addi-
tionally used this approach to estimate the effects of these cir-
culating proteins on risk of severe SARS-CoV-2, using studies
from the literature who have made GWAS results on this
outcome.

Added value of this study

Our study provides a systematic evaluation of the genetically
predicted effects of 10 cardiometabolic risk factors on each of
the 97 unique proteins. Altogether, we found 105 effects which
were robust to multiple testing corrections which may be valu-
able for future covid-19 research. We also evaluated whether
any of these proteins influence risk of SARS-CoV-2, with soluble
glycoprotein 130 providing the strongest evidence of a geneti-
cally predicted effect using MR. This protein is involved on the
interleukin 6 receptor pathway which plays an important role
in the body’s immune response. However, further data is
required to robustly support this gene’s putative role in risk of
severe SARS-CoV-2.

Implications of all the available evidence

Our findings are important in terms of developing insight into
the molecular pathways by which modifiable lifestyle factors
influence disease risk. Specifically with respect to severe covid-
19, we note that the GWAS datasets of SAR-CoV-2 used in this
work will capture genetic effects on increased susceptibility to
infection as well as progression to severe symptoms. This is
particularly important when considering the implications of
therapeutically targeting any of the proteins highlighted by our
study.
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estimate the effects of 10 cardiometabolic risk factors on each of
these proteins in turn using an approach known as Mendelian ran-
domization (MR). We additionally used this approach to estimate the
effects of these circulating proteins on risk of severe SARS-CoV-2,
using studies from the literature who have made GWAS results on
this outcome.

Added value of this study
Our study provides a systematic evaluation of the genetically pre-

dicted effects of 10 cardiometabolic risk factors on each of the 97
unique proteins. Altogether, we found 105 effects which were robust
to multiple testing corrections which may be valuable for future
covid-19 research. We also evaluated whether any of these proteins
influence risk of SARS-CoV-2, with soluble glycoprotein 130 provid-
ing the strongest evidence of a genetically predicted effect using MR.
This protein is involved on the interleukin 6 receptor pathway which
plays an important role in the body’s immune response. However,
further data is required to robustly support this gene’s putative role
in risk of severe SARS-CoV-2.

Implications of all the available evidence
Our findings are important in terms of developing insight into the

molecular pathways by which modifiable lifestyle factors influence
disease risk. Specifically with respect to severe covid-19, we note
that the GWAS datasets of SAR-CoV-2 used in this work will capture
genetic effects on increased susceptibility to infection as well as pro-
gression to severe symptoms. This is particularly important when
considering the implications of therapeutically targeting any of the
proteins highlighted by our study.
1. Introduction

On the 11th of March 2020 the World Health Organisation
(WHO) declared the coronavirus disease 2019 (covid-19) a global
pandemic [1]. Although strict lockdown measures have been
enforced in many countries to control the spread of infection, the
number of deaths worldwide which have been attributed to
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
continues to rise [2]. Furthermore, despite widespread ongoing
biomedical research it remains unclear why some individuals
develop severe symptoms of SARS-CoV-2 once contracting covid-
19, whereas an estimated 80% of individuals display either
asymptomatic or mild infections [3]. It is becoming increasingly
evident however based on findings from the literature that estab-
lished cardiometabolic disease risk factors play a role in the
severity of symptoms for SARS-CoV-2 [4, 5].

To address this challenge, researchers in the field, led by col-
leagues from the MRC Epidemiology Unit, have rapidly generated a
curated dataset concerning the genetic architecture of 97 unique pro-
teins which may be involved in influencing severe SARS-CoV-2 [6].
These include inflammatory cytokines and antibodies (such as immu-
noglobulin G) which are involved in immune response to infection,
proteins involved in fibrinolysis and blood coagulation and gene
products which have been reported to interact with SARS-CoV-2 pro-
teins in human cells [7]. A complete list of these proteins can be
found in Supplementary Table 1.

This curated resource provides an opportunity to undertake Men-
delian randomization (MR) analyzes to develop insight into modifi-
able risk factors that influence these SARS-CoV-2-related proteins, as
well as potential downstream consequences on risk of covid-19. MR
can be implemented as a form of instrumental variable analysis
which exploits the random assortment of genetic alleles at birth
under Mendel’s laws of Inheritance [8, 9]. As such genetic variants
can be leveraged as instrumental variables to investigate causal rela-
tionships between conventional exposures (such as cardiometabolic
risk factors) and outcomes (such as circulating proteins) (Fig. 1A). As
these inherited genetic variants are fixed at conception, MR is typi-
cally robust to confounding factors and reverse causation which can
bias analyzes in an observational setting which do not make use of
human genetics data.

In this study, we systematically applied MR to estimate the effects
of 10 cardiometabolic exposures and genetic liability to lifetime
smoking in turn on each of the SARS-CoV-2 prioritized proteins. We
focused on these types of exposures given findings from the literature
providing evidence that they may increase risk of severe covid-19,
including observations from cohort studies, healthcare records and
previous genetic studies [10-14]. This was followed by a series of sen-
sitivity analyzes as well as applying multivariable MR to evaluate
whether exposures independently influence the same circulating
protein or act along overlapping causal pathways. We also sought to
investigate the potential effects of proteins highlighted by this

https://omicscience.org/apps/covidpgwas/


Fig. 1. Schematic representation of the analysis undertaken in this study using Mendelian randomization. A) We firstly leveraged genetic variants (referred to as single nucleotide
polymorphisms (SNPs)) to systematically estimate the effect of 11 risk factors on 97 circulating proteins related to SARS-CoV-2. B) For proteins highlighted in the initial analysis, we
applied MR to estimate their genetically predicted effects on risk of severe SARS-CoV-2. Note that the circulating protein could influence progression from SARS-CoV-2 infection to
severe covid-19 without influencing risk of becoming infected (or it could influence the two processes in opposite directions). Instruments for proteins were SNPs robustly associ-
ated with their levels and located in the genome at the encoding genes region (commonly referred to as cis-protein quantitative trait loci (cis-pQTL)).
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analysis on risk of severe covid-19 using data from recently con-
ducted genome-wide association studies (GWAS).

2. Methods

2.1. Data resources

2.1.1. Deriving genetic instruments for modifiable exposures
We obtained genetic instruments for 11 exposures using data

from large-scale GWAS. These were body mass index (BMI), systolic
blood pressure (SBP), diastolic blood pressure (DBP), high density
lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) choles-
terol, triglycerides, apolipoprotein A-I (Apo A-I), apolipoprotein B
(Apo B), genetic liability to lifetime smoking, waist-hip-ratio adjusted
for BMI and childhood adiposity based on reported body size at age
10 [15-18]. Details on the study characteristics for the GWAS used to
derive these instruments can be found in Supplementary Table 2.

We undertook linkage disequilibrium (LD) clumping to identify
independent genetic instruments for these 11 exposures assessed
using the software PLINK [19]. This process involves removing
genetic variants which are correlated with the mostly strongly associ-
ated variant with a trait of interested in a region based on pairwise LD
(using r2 < 0.001 in this study) using a reference panel of 503 individ-
uals of European descent from phase 3 (version 5) of the 1000
genomes project [20].

2.1.2. Quantitative trait loci data for SARS-CoV-2-related proteins
All pQTL summary statistics for 97 unique proteins were obtained

from the https://omicscience.org/apps/covidpgwas webserver [6].
Details on how these pQTL were derived are described in detail in the
study by Pietzner et al. and outlined in Supplementary Fig. 1. Briefly,
plasma samples from 10,708 individuals from the Fenland popula-
tion-based cohort study were eligible for analysis after exclusions. In
total, 409 circulating proteins were prioritized due to any of the fol-
lowing criteria; evidence suggesting that they interact with SARS-
CoV-2 (n = 332) [7], associated with disease severity (n = 26) [21],
involved in viral entry (n = 2) [22] or that they are clinical biomarkers
of adverse, prognosis, complications and disease deterioration
(n = 54) [23-26]. Of the proteins, SOMAscan proteomic assays were
used to derive data on 179 of them.
In the same set of participants, imputed genotype data on
17,652,797 genetic variants were available after imputation using the
UK10K+1000 G phase3 reference panel. Summary statistics were
available in a total of 97 unique proteins from the webserver as they
had at least 1 pQTL acting in cis, which is defined here as genetic var-
iants robustly associated with circulating proteins (based on
P<5 £ 10�08) and located within a 1Mb window around the genes
responsible for encoding them.

We undertook LD clumping as before to identify pQTL to be used
as instruments in MR analyzes. However, for protein instrumental
variables we applied a more lenient LD threshold of r2<0.2 to identify
weakly correlated pQTL all within a cis-window of 1Mb either side of
the lead cis-pQTL for each protein analyzed. MR was then undertaken
for protein targets whilst taking into account LD structure of pQTL.
Further details on this method have been described in detail by Bur-
gess et al [27]. In brief, the pairwise correlations between all instru-
ments are incorporated in the standard error of the test statistic for
the summary-level weighted generalized linear regression MR when
deriving causal estimates.

2.1.3. Covid-19 GWAS datasets
Genetic estimates on SARS-CoV-2 were obtained using data from

a GWAS of severe covid-19 [28] based on 1980 patients from inten-
sive care units and wards at seven hospital located in the pandemic
epicenters in Italy and Spain (accessed on 11/08/2020). Severe covid-
19 was defined as hospitalization with respiratory failure and a con-
firmed SARS-CoV-2 viral RNA polymerase-chain-reaction (PCR) test
using nasopharyngeal swabs or other biological fluids. General popu-
lation controls analysed in this GWAS had unknown covid-19 status.
Effect estimates from these GWAS were mapped to hg19 coordinates
using the LiftOver tool (https://genome.sph.umich.edu/wiki/Lift
Over). We analyzed GWAS data on severe SARS-CoV-2 data as detec-
tion and classification of these is likely to be more complete and less
selected than for reported covid-19 symptoms or SARS-CoV-2 test
positivity, for which potentially misleading conclusions can be drawn
[29]. We also sought out replication of findings using GWAS results
from the covid-19 host genetic initiative [30] using data on hospital-
ized covid-19 cases compared to population controls (https://www.
covid19hg.org/results/, accessed on 11/08/2020), as well as a GWAS
of mortality attributed to covid-19 in the UK Biobank study compared

https://omicscience.org/apps/covidpgwas
https://genome.sph.umich.edu/wiki/LiftOver
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Fig. 2. Forest plots illustrating the Mendelian randomization estimates of genetically predicted A) body mass index and B) triglycerides on circulating proteins related to severe
SARS-CoV-2. Proteins have been grouped and colored based on their subcategories. * Gelsolin corresponds to soma ID 16,607�78 as a separate epitope is also available on the Soma-
Logic assay for this protein.
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to population controls based on analyzes by Johnson and colleagues
[31] (available at https://grasp.nhlbi.nih.gov/Covid19GWASResults.
aspx, accessed on 11/08/2020).

2.2. Ethics statement

All data analyzed in this study is summary-level data. The relevant
ethical approval can be found in the corresponding studies refer-
enced for each dataset.

2.3. Statistical analysis

We firstly applied MR to estimate the effect of each of the 11
exposures in turn on each protein in a two-sample setting [32]. Ini-
tially we used the inverse variance weighted (IVW) approach which
takes the SNP-outcome estimates and regresses them on those for
the SNP-exposure associations. This provides an overall weighted
estimate of the causal effect which is based on the inverse of the
square of the standard error for the SNP-outcome association [33].
We applied a correction using false discovery rate (FDR)<5% to these
results to account for multiple testing. This threshold has been used
in this study as a heuristic to highlight findings with the strongest
statistical evidence to investigate in further detail.

For effects which survived FDR corrections we applied other MR
methods as sensitivity analyzes. This firstly involved applying the
weighted median and MR-Egger approaches which are more robust
to horizontal pleiotropy in comparison to the IVW method [34, 35].
We also applied the MR directionality test (also referred to as the
‘Steiger method’) to support evidence that our genetic variant is a
valid instrument for the exposure in line with the underlying
assumptions of MR [36]. Multivariable MR was undertaken to evalu-
ate the direct effects of exposures on circulating proteins whilst
accounting for the effects of other exposures [37, 38]. In doing so, we
were able to investigate whether the effect of exposures on proteins
were putatively mediated via another exposure. To estimate the
proportion mediated we applied the product method described pre-
viously by Burgess and colleagues [39], using genetic instruments
from the GIANT consortium for BMI to avoid overlapping samples
with the UK Biobank [40].

We next applied MR to investigate the genetically predicted effects
of circulating proteins robust to FDR corrections and sensitivity analyzes
in the previous analysis on risk of severe SARS-CoV-2 using GWAS
results from Ellinghaus et al. This was undertaken by applying the IVW
method which uses correlated cis-regulatory variants whilst accounting
for their correlation structure [27]. For proteins which provided strong
evidence of an effect using the IVW method, we also applied the MR-
Egger approach whilst accounting for correlation structure amongst
instruments. The MR-Egger is traditionally applied to investigate hori-
zontal pleiotropy in MR studies, although was applied predominantly as
a sensitivity analysis in this work given the low number of instrumental
variables available for our cis-pQTL analyzes. We also attempted to rep-
licate findings using the GWAS data from the covid-19 HGI and Johnson
et al. analyzes [30, 31]. Finally, we applied the cis-correlated IVW
approach systematically to all proteins with at least 2 cis-pQTL (as this
is the minimum number required for the IVW method) for each covid-
19 GWAS dataset. This allowed us to highlight proteins which may play
a role in disease but are not strongly under the influence of modifiable
risk factors. Importantly, given that these proteins were derived in sam-
ples who did not have covid-19, our MR estimates are therefore mainly
useful in terms of prioritising candidates for further research rather
than implicating them directly in severe covid-19 susceptibility.

All analyzes were undertaken using the ‘TwoSampleMR’ and
‘MendelianRandomization’ packages using R (version 3.5.1) [41, 42].
The forest plot in Fig. 2 was generated using ‘ggplot2’ v2.2.1 [43].
Fig. 3 was generated using the LD link resource [44].
2.4. Role of funding source

The funders had no role in study design, data collection, data ana-
lyzes, interpretation, or writing of report.
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Fig. 3. A diagram of the genetic locus used to identify protein quantitative trait loci (pQTL) as instrumental variables in the Mendelian randomization analysis for glycoprotein 130
(encoded by IL6ST) and severe SARS-CoV-2. The heatmap represents the linkage disequilibrium structure at this region amongst the pQTL used with the bottom-left section repre-
senting pairwise r2 coefficients (red) and the upper-right section illustrating pairwise D’ values (blue). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3. Results

3.1. A systematic Mendelian randomization analysis of circulating
proteins

Across the 11 exposures assessed, there were 253 genetically pre-
dicted effects on circulating proteins which survived FDR<5% correc-
tions using the IVW method (Supplementary Table 3). Amongst top
findings was a strong effect of BMI on C-reactive protein (CRP) levels
(Beta=0.34 per standard deviation change in BMI, 95% CI=0.26 to
0.41, P = 2.19 £ 10�16) which is a well-established marker of chronic
inflammation [45]. Elsewhere, there was strong evidence of an effect
of HDL cholesterol on elevated levels of serum amyloid A-1
(Beta=0.23, 95% CI=0.16 to 0.29, P = 1.59 £ 10�12) and A-2 (Beta=0.24,
95% CI=0.17 to 0.30, P = 4.38 £ 10�13) proteins. Undertaking sensitiv-
ity analyzes found 106 effects that were robust to FDR<5% correc-
tions using either the weighted median or MR-Egger methods
(Supplementary Tables 4 and 5). The MR directionality tests pro-
vided evidence that assumptions regarding directionality may have
been violated for one of these effects, which was between waist-hip-
ratio adjusted for BMI and the protein ITIH3 (IVW Beta=�0.31, 95%
CI=�0.46 to �0.16, P = 4.07 £ 10�05) (Supplementary Table 6). IVW
estimates for the 105 effects which were robust to sensitivity
analyzes can be found in Supplementary Table 7. An overview of the
analytical pipeline applied in this section including method and data-
sets used can be found in Supplementary Fig. 2.

Amongst the exposures which contributed most to the remaining
105 effects were BMI (23 effects) and triglycerides (27 effects). As
illustrated in Fig. 2, the effects driven by BMI were typically spread
across the 6 subcategories of circulating proteins. This included
effects on coagulation factor IX (IVW Beta=0.21, 95% CI=0.14 to 0.27,
P = 2.42 £ 10�07), tissue-type plasminogen activator (Beta=0.16, 95%
CI=0.09 to 0.23, P = 2.38 £ 10�06) and cytokines including interleu-
kin-1 receptor antagonist (Beta=0.23, 95% CI=0.17 to 0.30,
P = 9.04 £ 10�12). In contrast, the majority of triglycerides effects
were found to be on proteins allocated to the SARS-CoV-Human pro-
tein-protein interaction (PPI) or severe covid-19 disease subcatego-
ries. There were exceptions to this however, such as an effect on
clotting factor vitamin K-dependent protein S (Beta=0.21, 95%
CI=0.15 to 0.27, P = 1.25 £ 10�10) and cytokine signal transducer
interleukin-6 receptor subunit beta (Beta=�0.21, 95% CI=�0.28 to
�0.13, P = 4.12 £ 10�08). We also note the conflicting directions of
effect which risk factors have on the proteins assessed even within
the same category. For example, within the fibrinolysis category BMI
provided evidence of an effect on higher levels of fibrinogen
(Beta=0.09, 95% CI=0.02 to 0.16, P = 0.008), as well as an inverse effect
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on antithrombin III (Beta=�0.25, 95% CI=�0.32 to �0.18,
P = 4.43 £ 10�13). Findings from the literature supported the direc-
tion of effect between BMI and circulating proteins for various effects
identified in this analysis (CRP, Factor B and H, the interleukin 1 fam-
ily of proteins, SAA/2, fibrinogen and antithrombin III), although for
others there was no clear prior evidence suggesting that obesity
influences their levels (Supplementary Table 8).

BMI is recognized to causally influence triglycerides and we there-
fore undertook multivariable MR to evaluate the direct effects of BMI
and triglycerides on the 7 proteins which they had in common based
on univariable estimates in the previous analysis. The majority of
these effects remained robust after accounting for the effects of the
other exposure, suggesting that BMI and triglycerides influence these
proteins directly via separate causal pathways (Supplementary Table
9). The notable exception to this was the effect of BMI on immuno-
globulin G. Effect estimates for BMI on this circulating protein identi-
fied in the univariable analysis (Beta=�0.11, 95% CI=�0.18 to 0.04,
P = 0.02) attenuated to the null when accounting for the effect of tri-
glycerides (Beta=�0.06, 95% CI=�0.13 to 0.02, P = 0.13). This suggests
that BMI indirectly lowers immunoglobulin G due to its influence on
raising triglyceride levels. We estimated that 44% of the BMI effect on
immunoglobulin G was mediated via triglycerides using mediation
MR.

3.2. Harnessing cis-regulatory variants to evaluate effects of circulating
proteins on risk of severe SARS-CoV-2

For each protein highlighted in the previous analysis, we under-
took MR using cis-pQTL as instruments to estimate their effects on
risk of severe SARS-CoV-2 (Supplementary Table 10). Although no
results survived multiple testing corrections based on a false-discov-
ery rate threshold of less than 5%, we sought to replicate our lead
findings from this analysis. The protein which provided the strongest
evidence that it may influence risk of covid-19 was gp130, soluble,
also known as glycoprotein 130 (odds ratio (OR)=1.81 increased risk
of severe SARS-CoV-2 per doubling of gp130, 95% CI=1.25 to 2.62,
P = 0.002). This protein is encoded by the IL6ST gene and is responsi-
ble for signal transduction with all members of the interleukin 6
receptor family [46]. There were 18 weakly correlated pQTL scattered
across this locus used as instrumental variables as illustrated in
Fig. 3. Their pairwise LD correlations can be found in Supplementary
Table 11. Single variant associations for these 18 pQTL with severe
SARS-CoV-2 suggested that the two instruments largely responsible
for driving the overall IVW estimate were rs929108 (P = 0.002),
which is located downstream of IL6ST (i.e. the opposite side com-
pared to IL31RA) and rs6875155 (P = 0.006), located within the gene
body of IL6ST itself.

Applying the MR-Egger method accounting for correlation struc-
ture using the 18 IL6ST instruments produced an elevated but impre-
cisely effect estimates which included the null (OR=1.55, 95% CI=1.00
to 2.39, P = 0.05). We were unable to detect robust evidence of repli-
cation using the two other covid-19 GWAS datasets (covid-19 host
genetics initiative: OR=1.11, 95% CI=0.83 to 1.48, P = 0.48 & Risk of
death due to covid-19 death in UK Biobank: OR=1.26, 95% CI=0.79 to
2.00, P = 0.34). Lastly, we applied the IVWmethod accounting for cor-
relation structure to all proteins with at least 2 cis-pQTL to evaluate
their genetically predicted effects on risk of covid-19. However, using
current sample sizes we did not detect strong evidence that these cir-
culating proteins influence risk of severe covid-19 based on multiple
testing corrections (Supplementary Tables 13�15).

4. Discussion

We have undertaken a comprehensive Mendelian randomization
study to systematically evaluate the effect of 11 established risk factors
for disease on circulating levels of proteins related to SARS-CoV-2.
Our main findings are that among the modifiable risk factors assessed,
BMI and triglycerides showed the widest repertoire of causal effects on
these circulating proteins (providing evidence of causation for 23 and
27 effects, respectively). Furthermore, of the circulating proteins investi-
gated by our study, the strongest evidence of an effect on developing
severe covid-19 was identified for glycoprotein 130, which is involved
in the transmission of molecular signals for inflammatory interleukin
cytokines.

It is important to recognise that the case definitions of severe
covid-19 in these studies will capture both genetic effects on
increased susceptibility to infection as well as increased progression
to severe symptoms [47]. It is likely that genetic effects will differ
between infection and progression, indeed they could even be in dif-
ferent directions. MR estimates derived using these datasets should
therefore take this into account when interpreting the potential
implications of therapeutically targeting any proteins highlighted by
this (and similar) studies (Fig. 1B).

Amongst the 105 effects which were robust to multiple testing
and sensitivity analyzes there were several well-established relation-
ships based on the literature. For example, having a high BMI is a
known driver of systemic inflammation as indexed by C-reactive pro-
tein levels [45] and acute inflammatory markers such as fibrinogen
[48]. Other findings fit with the known biology of cardiometabolic
risk factors and proteins identified by our analysis, such as the effect
of HDL cholesterol on serum amyloid A-1 and A-2 proteins, which
have previously been proposed as clinically applicable surrogates of
HDL vascular functionality [49]. Whilst our results are therefore of
immediate importance for SARS-CoV-2 research, they may also be
valuable for future endeavors interested in the therapeutic potential
of these proteins with respect to a wide range of disease outcomes.

There were several results from our study which may assist in
unraveling the complex pathogenesis of severe SARS-CoV-2. For
example, immunoglobulin G (IgG) is a class of antibodies produced
by plasma B cells in the immune system in response to a pathogen
[50]. Our results indicate that having a high BMI may reduce levels of
circulating IgG, suggesting that people with obesity have less of this
class of antibody to help protect from infection. That being said, an
important consideration when interpreting this finding is that IgG
levels were measured in individual’s in a healthy state and can there-
fore only act a proxy for IgG response to infection. Additionally,
generic IgG levels were measured rather than the specific adaptive
immune response to SARS-CoV-2.

Additionally, our multivariable MR estimates for the effect BMI on
IgG attenuated when accounting for the effect of triglycerides on this
class of antibodies. This suggests that triglycerides may mediate the
lowering effect of BMI on IgG, which we estimated as 41.1% of the
total effect of BMI on IgG levels being mediated via triglycerides. Fur-
ther research into the role of IgG and B cell immunity in response to
the covid-19 pathogen is therefore warranted, particularly given that
IgG is being measured by tests for antibody responses to SARS-CoV-2
[51]. Along with evaluating the effect of modifiable risk factors on
antibody mediated immunity to covid-19, it will be critical to develop
insight into how these factors influence cell mediated immunity
given the emerging importance of the adaptive immune response to
SARS-CoV-2 [52].

Using MR to estimate the genetically predicted effects of circulat-
ing proteins on severe covid-19 risk highlighted glycoprotein 130 as
the protein with the strongest evidence of an effect on severe SARS-
CoV-2 (OR=1.81, 95% CI=1.25 to 2.62, P = 0.002), however we were
unable to replicate these findings in larger samples. A possible expla-
nation for this could be the heterogeneity between the SARS-CoV-2
GWAS datasets analyzes and their variable case definitions. This
requires robust replication that would be necessary before initiating
further in-depth analyzes. Glycoprotein 130 is encoded by the IL6ST
gene and belongs to the interleukin-6 family of cytokines [46]. It’s
activation is dependent upon the binding of cytokines with their
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receptors, such as interleukin-6 (IL6) with interleukin-6 receptor
(IL6R) [53]. This is noteworthy due to the extensive interest in repur-
posing IL6R blockers as a potential therapeutic strategy for SARS-
CoV-2 [54-58]. As lowering the levels of circulating IL6R will lead to
lower activation of glycoprotein 130, estimates in this study suggest
that this might result in reduced risk of severe SARS-CoV-2 symp-
toms. These findings therefore corroborate results from a recent MR
study which used human genetic data to support the efficacy of IL6R
inhibition as a potential treatment option for severe SARS-CoV-2
symptoms [59]. However the MR studies to date have not been able
to reliably separate influences on risk of becoming infected from risk
of progressing to severe disease following infection (Fig. 1B). Thus
they do not provide robust evidence as to whether IL6R inhibition
would be expected to favourably influence outcome in severe covid-
19. Adequately powered randomized controlled trial data are essen-
tial for evaluating the clinical value of therapeutic intervention tar-
geting IL6R [55].

This study has several limitations which should be taken into
account when interpreting its findings. The current sample sizes of the
SARS-CoV-2 GWAS are (as one would expect) relatively modest com-
pared to large-scale GWAS data which MR studies are contemporane-
ously applied to, meaning that our cis-pQTL analysis is likely
underpowered. We analyzed severe covid-19 as an outcome to mitigate
reported selection bias of cases [29], so larger sample sizes of severe
SARS-CoV-2 GWAS in the future should improve the statistical power of
our approach. Furthermore, although data from plasma is of unprece-
dented sample size compared to previous large-scale pQTL analyzes
(n = 10,708), it remains comparably modest to the sample sizes of
GWAS used to derive instrument for the cardiometabolic exposures in
this work. This is exaggerated by the fact that protein MRs are typically
conducted using instruments relating to a single gene and therefore
these genetic variants will explain a lower proportion of variance in the
exposure than if instruments are taken from across the genome [60].
Therefore, although we have undertaken thorough evaluations to inter-
rogate bi-directional relationships between the exposures and proteins
in this study, the discrepancies between the samples sizes makes the
direction of effect challenging to orientate (the majority of exposure
instruments were derived using sample sizes of n=~440,000). Finally,
although data from plasma pQTL studies provide an exceptional oppor-
tunity to leverage instruments for MR studies, it should be noted that
serum plasma may not capture signatures confined to disease or cell-
type relevant tissues. This is particularly important for a disease with a
large autoimmune component such as covid-19 and further emphasis
should therefore be noted when interpreting the results of our study on
proteins such as IgG. Finally, studies need to be conducted on data that
allow MR to separately investigate modifiable influences on acquiring
SARS-CoV-2 and on progressing to severe covid-19 or death (Fig. 1B).

In conclusion, our MR study identified many effects between con-
ventional risk factors and circulating proteins which provides a plat-
form for prospective endeavors to dissect related disease pathways.
Future research into the pathogenesis of the proteins highlighted by
this study are warranted to discern whether they may hold therapeu-
tic potential for severe covid-19.
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