2,308 research outputs found

    A Neuro-Fussy Based Model for Diagnosis of Monkeypox Diseases

    Get PDF
    The largest vertebrate viruses known, infecting humans, and other vertebrates are poxviruses including cowpox, vaccinia, variola (smallpox), and monkeypox viruses. Monkeypox was limited to the rain forests of central and western Africa until 2003. A smallpox-like viral infection caused by a virus of zoonotic origin, monkeypox belongs to the genus Orthopoxvirus, family Poxviridae, and sub-family Chordopoxvirinae. Monkeypox has a clinical presentation like ordinary forms of smallpox, including flulike symptoms, fever, malaise, back pain, headache, and characteristic rash. In view of the eradication of smallpox, such symptoms in a monkepox endemic region should be carefully diagnosed. The problem in diagnosing monkeypox lies in the fact that it is clinically indistinguishable from other pox-like illnesses making virus differentiation difficult. In this paper, we present a neuro-fuzzy based model for early diagnosis of monkeypox virus with a differentiation from other pox families

    Future directions for river carbon biogeochemistry observations

    Get PDF
    Rivers carry large quantities of carbon and form an important link between terrestrial, marine and atmospheric biogeochemical cycles, yet our observations of river carbon are severely limited. Here we provide a blueprint to build a global River Observation System that would improve our ability to observe and predict changes in this crucial piece of the global carbon cycle

    Performance and Security of Group Signature in Wireless Networks

    Get PDF
    A Group signature protocol is a cryptographic scheme that decouples a user identity and location from verification procedure during authentication. In a group signature scheme, a user is allowed to generate signatures on behalf of other group members but identity and location information of the signer is not known by a verifier. This ensures privacy, authentication and unlinkability of users. Although group signature is expensive to implement, its existential anonymity, non-repudiation and untraceablility properties make it attractive especially for resources-constrained devices in wireless network. A general group signature scheme usually contains six basic phases: setup (or key generation), join, message signing (or signature generation), signature verification, open and user revocation. In this paper, an evaluation of the performance of group signature based on three of the phases mentioned above is considered and its security in wireless networks examined. The key generation, signing and verification algorithms are implemented in Java 8. A proof of security of group signature by implication is also presented

    A quick guide for student-driven community genome annotation

    Full text link
    High quality gene models are necessary to expand the molecular and genetic tools available for a target organism, but these are available for only a handful of model organisms that have undergone extensive curation and experimental validation over the course of many years. The majority of gene models present in biological databases today have been identified in draft genome assemblies using automated annotation pipelines that are frequently based on orthologs from distantly related model organisms. Manual curation is time consuming and often requires substantial expertise, but is instrumental in improving gene model structure and identification. Manual annotation may seem to be a daunting and cost-prohibitive task for small research communities but involving undergraduates in community genome annotation consortiums can be mutually beneficial for both education and improved genomic resources. We outline a workflow for efficient manual annotation driven by a team of primarily undergraduate annotators. This model can be scaled to large teams and includes quality control processes through incremental evaluation. Moreover, it gives students an opportunity to increase their understanding of genome biology and to participate in scientific research in collaboration with peers and senior researchers at multiple institutions

    Spatially targeted nature-based solutions can mitigate climate change and nature loss but require a systems approach

    Get PDF
    Funding Information: This study was funded by the Royal Society for the Protection of Birds (RSPB) and Natural England (project code ECM 58632). The Breeding Bird Survey is a Partnership between the BTO, RSPB, and Joint Nature Conservation Committee (on behalf of Natural Resources Wales, Natural England, Council for Nature Conservation and Countryside, and NatureScot) and relies on volunteer surveyors. Simon Gillings provided tetrad-level predictions of relative abundance for wading birds. We are grateful to members of the RSPB steering group, who contributed to the development of our scenarios, and Profs. Tim Benton and Andrew Balmford who commented on an earlier version of this manuscript. Conceptualization, T.F. R.B.B. T.B.-L. G.M.B. W.J.P. and R.H.F.; methodology, T.F. T.B.-L. J.P.C. D.M. P.S. and R.H.F.; software, T.F.; formal analysis, T.F.; resources, D.M.; data curation, T.F.; writing – original draft, T.F.; writing – review & editing, R.B.B. T.B.-L. G.M.B. J.P.C. D.M. P.S. W.J.P. and R.H.F.; visualization, T.F.; supervision, W.J.P. The authors declare no competing interests. Publisher Copyright: © 2023 The AuthorsPeer reviewedPublisher PD

    Ancient volcanism on the Moon: Insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites

    Get PDF
    Lunar meteorites provide a potential opportunity to expand the study of ancient (>4000 Ma) basaltic volcanism on the Moon, of which there are only a few examples in the Apollo sample collection. Secondary Ion Mass Spectrometry (SIMS) was used to determine the Pb isotopic compositions of multiple mineral phases (Ca-phosphates, baddeleyite K-feldspar, K-rich glass and plagioclase) in two lunar meteorites, Miller Range (MIL) 13317 and Kalahari (Kal) 009. These data were used to calculate crystallisation ages of 4332 ±2Ma (95% confidence level) for basaltic clasts in MIL 13317, and 4369 ±7Ma (95% confidence level) for the monomict basaltic breccia Kal 009. From the analyses of the MIL 13317 basaltic clasts, it was possible to determine an initial Pb isotopic composition of the protolith from which the clasts originated, and infer a 238U/204Pb ratio (μ-value) of 850 ±130(2σ uncertainty) for the magmatic source of this basalt. This is lower than μ-values determined previously for KREEP-rich (an acronym for K, Rare Earth Elements and P) basalts, although analyses of other lithological components in the meteorite suggest the presence of a KREEP component in the regolith from which the breccia was formed and, therefore, a more probable origin for the meteorite on the lunar nearside. It was not possible to determine a similar initial Pb isotopic composition from the Kal 009 data, but previous studies of the meteorite have highlighted the very low concentrations of incompatible trace elements and proposed an origin on the farside of the Moon. Taken together, the data from these two meteorites provide more compelling evidence for widespread ancient volcanism on the Moon. Furthermore, the compositional differences between the basaltic materials in the meteorites provide evidence that this volcanism was not an isolated or localised occurrence, but happened in multiple locations on the Moon and at distinct times. In light of previous studies into early lunar magmatic evolution, these data also imply that basaltic volcanism commenced almost immediately after Lunar Magma Ocean (LMO) crystallisation, as defined by Nd, Hf and Pb model ages at about 4370Ma

    Kepler Eclipsing Binary Stars. VI. Identification of Eclipsing Binaries in the K2 Campaign 0 Data-set

    Full text link
    The original {\it Kepler} mission observed and characterized over 2400 eclipsing binaries in addition to its prolific exoplanet detections. Despite the mechanical malfunction and subsequent non-recovery of two reaction wheels used to stabilize the instrument, the {\it Kepler} satellite continues collecting data in its repurposed {\it K2} mission surveying a series of fields along the ecliptic plane. Here we present an analysis of the first full baseline {\it K2} data release: the Campaign 0 data-set. In the 7761 light curves, we have identified a total of 207 eclipsing binaries. Of these, 97 are new discoveries that were not previously identified. Our pixel-level analysis of these objects has also resulted in identification of several false positives (observed targets contaminated by neighboring eclipsing binaries), as well as the serendipitous discovery of two short period exoplanet candidates. We provide catalog cross-matched source identifications, orbital periods, morphologies and ephemerides for these eclipsing systems. We also describe the incorporation of the K2 sample into the Kepler Eclipsing Binary Catalog\footnote{\url{keplerebs.villanova.edu/k2}}, present spectroscopic follow-up observations for a limited selection of nine systems, and discuss prospects for upcoming {\it K2} campaigns.Comment: Accepted for publication in MNRAS. 51 pages [20 figures, 8 tables]. Results available online in the Kepler Eclipsing Binary Star Catalog http://keplerebs.villanova.edu/k

    Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    Full text link
    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.Comment: Revision submitted to JMIV (02/24/13

    Effect of Military Deployment on Diabetes Mellitus in Air Force Personnel

    Get PDF
    Introduction: Military deployments relocate service members to austere locations with limited medical capabilities, raising uncertainties whether members with diabetes can participate safely. Military regulations require a medical clearance for service members with diabetes prior to deployment, but there is a dearth of data that can guide the provider in this decision. To alleviate the lack of evidence in this area, we analyzed the change in glycated hemoglobin (HbA1c) and body mass index (BMI) before and after a deployment among active duty U.S. Air Force personnel who deployed with diabetes. Materials and Methods: A retrospective analysis was conducted using HbA1c and BMI values obtained within 3 mo before and within 3 mo after repatriation from a deployment of at least 90 d between January 1, 2004 through December 31, 2014. The study population consisted of 103 and 195 subjects who had an available pre- and post-deployment HbA1c and BMI values, respectively. Paired t-tests were conducted to determine significant differences in HbA1C and BMI values. Results: The majority (73.8%) of members had a HbA1c7%. BMI declined for the overall population (28.3 kg/m2 vs. 27.7 kg/m2, p \u3c 0.0001) and for most of the subgroups. Conclusion: Air Force service members who deployed with diabetes, including those with a HbA1c \u3e 7%, experienced a statistically significant improvement in HbA1c and BMI upon repatriation. A prospective study design in the future can better reconcile the effect of a military deployment on a more comprehensive array of diabetes parameters
    corecore