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Abstract 16 

Lunar meteorites provide a potential opportunity to expand the study of ancient (> 4000 Ma) basaltic 17 

volcanism on the Moon, of which there are only a few examples in the Apollo sample collection. 18 

Secondary Ion Mass Spectrometry (SIMS) was used to determine the Pb isotopic compositions of 19 

multiple mineral phases (Ca-phosphates, baddeleyite K-feldspar, K-rich glass and plagioclase) in two 20 

lunar meteorites, Miller Range (MIL) 13317 and Kalahari (Kal) 009. These data were used to calculate 21 

crystallisation ages of 4332±2 Ma (95% confidence level) for basaltic clasts in MIL 13317, and 22 

4369±7 Ma (95% confidence level) for the monomict basaltic breccia Kal 009. From the analyses of 23 

the MIL 13317 basaltic clasts, it was possible to determine an initial Pb isotopic composition of the 24 

protolith from which the clasts originated, and infer a 
238

U/
204

Pb ratio (µ-value) of 850±280 (2σ 25 
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uncertainty) for the magmatic source of this basalt. This is lower than µ-values determined previously 26 

for KREEP-rich (an acronym for K, Rare Earth Elements and P) basalts, although analyses of other 27 

lithological components in the meteorite suggest the presence of a KREEP component in the regolith 28 

from which the breccia was formed and, therefore, a more probable origin for the meteorite on the 29 

lunar nearside. It was not possible to determine a similar initial Pb isotopic composition from the Kal 30 

009 data, but previous studies of the meteorite have highlighted the very low concentrations of 31 

incompatible trace elements and proposed an origin on the farside of the Moon. Taken together, the 32 

data from these two meteorites provide more compelling evidence for widespread ancient volcanism 33 

on the Moon. Furthermore, the compositional differences between the basaltic materials in the 34 

meteorites provide evidence that this volcanism was not an isolated or localised occurrence, but 35 

happened in multiple locations on the Moon and at distinct times. In light of previous studies into early 36 

lunar magmatic evolution, these data also imply that basaltic volcanism commenced almost 37 

immediately after Lunar Magma Ocean (LMO) crystallisation, as defined by Nd, Hf and Pb model 38 

ages at about 4370 Ma.  39 
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1. Introduction 40 

Lunar basalts collected during the Apollo and Luna missions have crystallisation ages ranging from 41 

approximately 4300-3100 Ma, but the vast majority comprise the mare basalts collected during the 42 

Apollo 11, 12, 15 and 17 missions, which have been dated to between 3800-3100 Ma (Nyquist and 43 

Shih 1992; for a more recent summary of lunar basalt ages see also Joy and Arai 2013). The 44 

crystallisation ages of the Apollo basalt samples have been combined with crater counting statistics for 45 

exposed mare basalt units across the lunar surface, obtained from orbital imagery, indicating that the 46 

exposed basalt flows were emplaced between 4000-1200 Ma, with a peak in basalt eruption between 47 

approximately 3700-3300 Ma (Hiesinger et al. 2003; 2010). Remote sensing evidence for ancient 48 

(>4000 Ma) mare volcanism was recognised by Schultz and Spudis (1979; 1983), who interpreted 49 

“dark-haloed” impact craters as instances where basaltic flows had been buried by the ejecta deposits 50 

from large impact craters, and then subsequently re-exposed by smaller impacts. These deposits of 51 

buried basaltic flows were designated the term “cryptomare” (Head and Wilson 1992). More recent 52 

remote sensing analyses of cryptomare deposits indicate a range of compositions consistent with the 53 

exposed mare basalts (Whitten and Head 2015a), as well as a geographical distribution of ancient 54 

lunar volcanism that mirrors the nearside-farside asymmetry of the younger basaltic flows (Whitten 55 

and Head 2015b). 56 

Using the compositional classification scheme proposed by Neal and Taylor (1992), the lunar mare 57 

basalts can be defined first by their bulk TiO2 content (where: > 6 wt% = high-Ti; 1-6 wt% = low-Ti; 58 

<1 wt% = very low-Ti [VLT]), then by Al2O3 content (>11 wt% = high-Al; < 11 wt% = low-Al) and 59 

finally by K content (> 2000 ppm = high-K; <2000 ppm = low-K). Sample-based evidence for ancient 60 

lunar volcanism was first identified in a number of Apollo 14 breccias, which were found to contain 61 

low-Ti, high-Al basaltic clasts with high concentrations of incompatible trace elements (ITEs), some 62 

of which are potentially as old as 4300-4200 Ma (Taylor et al. 1983; Shih et al. 1986; 1987; Dasch et 63 

al. 1987; Nyquist and Shih 1992; Neal and Kramer 2006). This has since been supplemented by 64 

evidence from lunar meteorites. Firstly, in the basaltic breccia meteorite Kalahari (Kal) 009, with U-65 

Pb dating of Ca-phosphate grains and Lu-Hf analyses of mineral separates indicating crystallisation 66 
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ages of 4350±150 Ma and 4286±95 Ma, respectively (Terada et al. 2007; Sokol et al. 2008). 67 

Subsequent investigation of the same meteorite by Shih et al. (2008) yielded a Sm-Nd isochron age of 68 

4300±50 Ma. These ages, combined with minor and trace element analyses of the meteorite, were 69 

interpreted as evidence that the basaltic material in Kal 009 was sourced from cryptomare basalt that 70 

(in contrast to the Apollo 14 basaltic clasts) had a VLT, high-Al composition and very low-ITE 71 

concentrations. More recently, U-Pb analyses of baddeleyite, Ca-phosphate and tranquillityite in the 72 

basaltic-bearing anorthositic breccia Miller Range (MIL) 13317 provided 
207

Pb/
206

Pb ages that were 73 

interpreted as evidence for two mare basalt lithologies with primary crystallisation ages of 4270±24 74 

Ma and 4352±9 Ma (Shaulis et al. 2016). The presence of zirconium-rich phases, such as those 75 

identified in MIL 13317, is typically associated with evolved lunar lithologies that are more ITE-rich 76 

than the Kal 009 basalt. Similarly, modelling of the MIL 13317 bulk rock composition (Zeigler and 77 

Korotev 2016) suggests that the breccia matrix contains a mixture of mare basalt and KREEP-rich 78 

lithologies (a geochemical signature defined by elevated concentrations of K, Rare Earth Elements, 79 

and P). 80 

In this study, the Pb isotopic compositions of multiple phases in the MIL 13317 basaltic clasts have 81 

been determined with Secondary Ion Mass Spectrometry (SIMS). This approach follows the one 82 

described by Snape et al. (2016; 2018), which demonstrated the potential for Pb isotopic analyses of 83 

lunar basalts to provide precise crystallisation ages, as well as estimates for the Pb isotopic 84 

composition of the basalts at the time of crystallisation (herein referred to as the initial Pb isotopic 85 

composition). The analytical approach outlined by Snape et al. (2016) was initially applied to mare 86 

basalt samples, but it has since been successfully used in non-basalt samples including the Apollo 16 87 

impact melt breccia, 66095, and clasts of evolved lithologies in two Apollo 14 breccias (Snape et al. 88 

2017; Nemchin et al. 2017). By applying the same method to basaltic clasts in the MIL 13317 breccia, 89 

this study aims to test the potential link between 
207

Pb/
206

Pb ages of minerals in the meteorite matrix 90 

with the clasts, and determine the initial Pb isotopic composition for some of the oldest identified 91 

lunar basalts. Additionally, new SIMS analyses have been made of phosphates in the Kal 009 92 
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meteorite in order to more precisely constrain its age and enable a more insightful comparison with the 93 

ages of the MIL 13317 basalt clasts. 94 

2. Methods 95 

2.1. Sample descriptions 96 

2.1.1. MIL 13317 97 

MIL 13317 was found in 2013 by the Antarctic Search for Meteorites Programme (ANSMET). 98 

Despite initial classification as an anorthositic breccia (Satterwhite and Righter 2015), more detailed 99 

investigations demonstrated that the breccia has a mafic composition more consistent with it having a 100 

basaltic origin (Korotev and Irving 2016; Zeigler and Korotev 2016; Curran et al. 2016). Pyroxene 101 

compositions determined by Curran et al. (2016) are consistent with the basaltic clasts being fragments 102 

of VLT to low-Ti (where TiO2 = 1-6 wt%; Neal and Taylor 1992) mare basalts. 103 

The Pb isotopic compositions were determined for accessory phases in five clasts, previously 104 

identified by Curran et al. (2016), and indicated in Fig. 1a (see also supplementary Fig. A.1). Three of 105 

these clasts were classified as fragments of basalt (Clasts 1, 4 and 10; Figs. 1b,c,e), and are composed 106 

primarily of subophitic intergrowths of pyroxene and plagioclase (with typical grain sizes of ~100-500 107 

µm), with smaller (typically ~200×30 µm) laths of a silica polymorph. Interstitial sites between these 108 

phases are occupied by areas of late-stage mesostasis, containing K-feldspar, K-rich glass and 109 

phosphates, which were the primary targets for the SIMS analyses. A fourth clast (600×350 µm) is a 110 

fragment of apparently more evolved granitic material dominated by K-rich glass and silica (Clast 22; 111 

Fig. 1d), but could potentially be a particularly large fragment of mesostasis from the same basaltic 112 

material as the first three clasts. The final clast analysed (Clast 2; Fig. 1e) was described by Curran et 113 

al. (2016) as a basaltic crystalline impact melt clast and lies adjacent to Clast 10. Despite containing a 114 

similar range of phases to the basalt clasts (i.e. pyroxene, plagioclase, silica and mesostasis), the 115 

impact melt clast is somewhat finer grained (typical grain sizes of ~50-200 µm) than the basalts and 116 

has more K-rich plagioclase compositions. Additionally, a number of analyses were made in mineral 117 

fragments within the breccia matrix. 118 
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2.1.2. Kalahari 009 119 

The Kal 008 and 009 meteorites were recovered in Botswana in 1999 (Russell et al. 2005). Despite 120 

being paired, the two stones are very different, with Kal 008 being classified as an anorthositic 121 

breccia, while Kal 009 is a brecciated VLT mare basalt (a detailed discussion of the geochemistry and 122 

petrology for both stones is provided by Sokol et al. 2008). Despite the VLT bulk composition and 123 

low bulk rock ITE abundances of the sample compared with most Apollo basalts, mineral chemistry 124 

data from the major silicate phases reported by Sokol et al. (2008) are consistent with VLT and low-Ti 125 

basalts, including those collected at both the Apollo 12, 15, 17 and Luna 24 landing sites (Figs. A.2. 126 

and A.3.). The meteorite is generally divided into areas of where the original igneous texture has been 127 

preserved and those that are more pervasively fractured (Fig. 2a). The Kal 009 basalt lacks most of the 128 

late-stage phases (e.g. K-feldspar, K-rich glass, zircon; Sokol et al. 2008) that have been successfully 129 

used to construct Pb-Pb isochrons in other lunar basalts (Snape et al. 2016; 2018), however, several 130 

small (10-30 µm) phosphate grains are present in the more brecciated regions of the meteorite, 131 

including those analysed previously by Terada et al. (2007). The meteorite also displays clear evidence 132 

of terrestrial weathering, with Ca-carbonate filling many of the fractures and veins in the samples (Fig. 133 

2b-c). Sokol et al. (2008) also reported the presence of what they describe as K-rich “cauliflower-like 134 

structures”, which they also attribute to terrestrial weathering (Figs. 2a-e). 135 

2.2. Analytical protocol 136 

The MIL 13317,7 thin section was provided by NASA’s Meteorite Working Group. The two sections 137 

of Kal 009 analysed in this study are the same as those previously studied by Terada et al. (2007) and 138 

Sokol et al. (2008). All of the sections were cleaned with ethanol before being carbon coated. Back 139 

Scattered Electron (BSE) images and X-ray elemental maps of each section were acquired using a 140 

Quanta 650 FEGSEM and accompanying Oxford Instruments Energy Dispersive Spectroscopy (EDS) 141 

detector at Stockholm University, operating with an accelerating voltage of 20 kV at a working 142 

distance of 10 mm. 143 
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Following the SEM documentation and prior to the SIMS analyses, the samples were cleaned with a 144 

fine (1 µm) diamond paste and ethanol to remove the carbon coating before adding a 30 nm gold 145 

coating. The Pb isotopic compositions of the phases were determined during three analytical sessions 146 

using a CAMECA IMS 1280 ion microprobe at the NordSIMS facility in the Swedish Museum of 147 

Natural History, Stockholm, using a methodology similar to that outlined in previous studies 148 

(Whitehouse et al. 2005; Bellucci et al. 2015). Apertures in the primary column were used to generate 149 

a slightly elliptical O2
-
 sample probe with dimensions appropriate to the target. The smaller phases 150 

(including K-rich glass, K-feldspar and phosphates) were analysed using either ~5 µm or ~10 µm 151 

spots (beam current typically 0.3-0.5 nA or 1-2 nA, respectively), while several plagioclase grains in 152 

the MIL 13317 clasts and the Ca- and K-rich material in the fractures of Kal 009 were analysed with a 153 

~30 µm spot (13-16 nA). Prior to each measurement, an area of 20-35 µm around the spot location 154 

was rastered for 240 seconds in order to remove the gold coating and minimise possible surface 155 

contamination. The instrument was operated in high-transmission mode, corresponding to a transfer 156 

magnification of 160×. In this mode, the field aperture size was chosen to limit the field of view on the 157 

sample surface (i.e. the area from which ions will be admitted to the mass spectrometer) to be bigger 158 

than the unrastered spot but smaller than the rastered beam, further minimising the possibility of 159 

surface contamination. The mass spectrometer was operated with a nominal mass resolution of 4860 160 

(M/ΔM), sufficient to resolve Pb from known molecular interferences. A Nuclear Magnetic Resonance 161 

(NMR) field sensor regulated the stability of the magnetic field to high precision. For analytical 162 

sessions 1, 3 and 4 (Table B.1) the Pb isotopes were measured simultaneously in multi-collector mode 163 

using four low-noise (<0.006 counts per second) ion counting electron multipliers (Hamamatsu 416) 164 

with electronically-gated deadtimes of 65 ns. Background counts for each channel were measured at 165 

regular intervals during each session. The average background values are reported in Table B.2. 166 

Individual analyses were filtered out of the final dataset if the count rates for any masses were lower 167 

than 3× the average background count rates during that session. 168 

Analyses of the MPI-DING glass reference material, GOR132, and the USGS basaltic glass reference 169 

material, BCR-2G, were used to generate a correction factor to account for mass fractionation and 170 
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detector relative gain calibration in the unknown analyses, assuming the values of Jochum et al. (2005) 171 

and Woodhead and Hergt (2000). The correction procedure involved dividing each of the “accepted” 172 

isotope ratios for GOR132 and BCR2-G (determined independently using MC-ICP-MS and TIMS 173 

analyses, respectively; Jochum et al. 2005; Woodhead and Hergt 2000), by the corresponding average 174 

of each ratio obtained from all standards in a given session in order to obtain a ratio-specific correction 175 

factor that incorporates both mass bias (a few parts per thousand at Pb mass; Shimizu and Hart 1982) 176 

and inter-detector (a few percent) gain (Table B.3.). Isotope ratios of unknown samples were then 177 

corrected by multiplying by these factors. Within uncertainty limits, no systematic drift was observed 178 

in the GOR132 and BCR2-G measurements during a given analytical session. The reproducibility of 179 

the GOR132 measurements (for the MIL 13317 analyses) was as follows: 
208

Pb/
206

Pb = 0.30%; 180 

207
Pb/

206
Pb = 0.28%; 

208
Pb/

204
Pb = 0.94%; 

207
Pb/

204
Pb = 0.74; 

206
Pb/

204
Pb = 0.89% (reported as 2σ 181 

standard deviations from the session average values for each ratio). The equivalent values for the 182 

BCR-2G measurements (two sessions for the Kal 009 analyses) were: 
208

Pb/
206

Pb = 0.77% and 0.26%; 183 

207
Pb/

206
Pb = 1.00% and 0.22%; 

208
Pb/

204
Pb = 1.19% and 0.73%; 

207
Pb/

204
Pb = 1.24% and 0.80%; 184 

206
Pb/

204
Pb = 0.68% and 0.80%. The standard deviations obtained from the GOR132 and BCR2-G 185 

analyses, the published uncertainties on the accepted values (Woodhead and Hergt 2000; Jochum et al. 186 

2005) and the uncertainties on each unknown analysis were propagated to determine the overall 187 

uncertainties of gain and mass bias corrected data, which are stated in Table B.1. 188 

Data were processed using in-house SIMS data reduction spreadsheets and the Excel add-in Isoplot 189 

(version 4.15; Ludwig 2008). Calculated ages are quoted at the 95% confidence level in the following 190 

discussion. 191 

2.3. Data reduction 192 

The datasets were processed using the approach outlined in Snape et al. (2016), with the assumption 193 

that they represent a mixture between three main components: (1) initial Pb present in the basaltic melt 194 

when it crystallised; (2) radiogenic Pb formed by the decay of U in the basalt after crystallisation; and 195 

(3) terrestrial contamination. On a plot of 
207

Pb/
206

Pb and 
204

Pb/
206

Pb, this three-component mixture 196 
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will define a triangular area (Fig. 3), with the initial Pb (or at least the lowest estimate for the initial Pb 197 

available from the data) corresponding to the highest 
207

Pb/
206

Pb values, the radiogenic Pb where 198 

204
Pb/

206
Pb = 0, and (Fig. 3), and the terrestrial contaminant corresponding to the highest 

204
Pb/

206
Pb 199 

values. Based on this assumption, the isochron for a given basaltic sample or clast is defined by the 200 

left side of this triangle, which can be determined by iteratively filtering the data to yield the steepest 201 

statistically significant weighted regression (i.e. MSWD < 2; probability > 0.1). For the MIL 13317 202 

basaltic clasts, data interpreted as showing signs of terrestrial contamination, according to the three-203 

component mixing assumption, all have high weighted residual values (>1.5) when included in the 204 

Isoplot regression calculation. 205 

In the case of Kal 009, the lack of different late-stage mineral phases in the analysed thin sections 206 

precludes the construction of an equivalent Pb-Pb isochron representing the crystallisation age of the 207 

basalt. Nonetheless, a weighted average 
207

Pb/
206

Pb  age was determined from analyses of Ca-208 

phosphates in the sample assuming that the Pb isotopic compositions analysed in these phases 209 

primarily represent the bottom left corner of the triangle described above (i.e. radiogenic Pb formed by 210 

the decay of U in the basalt after crystallisation), and that any 
204

Pb present is due to terrestrial 211 

contamination, which was corrected for using the modern day terrestrial Pb model values of Stacey 212 

and Kramers (1975). This is the same approach that has been demonstrated in numerous previous 213 

studies on a variety of different samples (e.g. Terada and Sano 2003; Terada et al. 2007; Nemchin et 214 

al. 2009; Thiessen et al. 2017). 215 

3. Results 216 

MIL 13317 217 

The data from each clast in MIL 13317 (Table B.1.) were first filtered following the procedure 218 

outlined above and described previously by Snape et al. (2016; 2017), in order to remove analyses 219 

clearly affected by terrestrial contamination, potentially introduced by weathering prior to collection 220 

of the meteorite, or during sample preparation and polishing (Fig. 3; Fig. A.4.; Table B.1). Notably, 221 

the effects of such contamination are relatively minor, even when compared with some Apollo basalts 222 
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(Snape et al. 2016). When plotted on axes of 
207

Pb/
206

Pb versus 
204

Pb/
206

Pb, the effect of terrestrial 223 

contamination is apparent, as it results in analyses lying further to the right of the more radiogenic 224 

uncontaminated lunar compositions (Fig. 3; Fig. A.4.; Table B.1). 225 

The data from the three basaltic clasts (Clasts 1, 4 and 10) and the granitic clast (Clast 22) form trends 226 

equating to Pb-Pb isochron dates of approximately 4330 Ma (Table 1; Fig. 4). The data from these 227 

individual clast isochrons can also be combined to form a single statistically valid (MSWD = 1.19; P = 228 

0.17) isochron, equating to a date of 4332±2 Ma (Table 1; Fig. 4f). In each of the three basaltic clasts 229 

there also appears to be a single outlier (two analyses in Clast 4 were repeat measurements of the same 230 

point to confirm the compositions; Table B.1) lying slightly above and left of the isochrons (Figs. 4a-231 

c). These outliers were excluded from the isochrons and the dates quoted here. Nonetheless, the most 232 

radiogenic compositions determined in each of the basaltic clasts have sufficiently low 
204

Pb/
206

Pb 233 

ratios that including these outliers in the isochrons would not affect the isochron ages beyond the level 234 

of uncertainty. An alternative isochron, incorporating these outliers, and equating to a date of 4330±3 235 

Ma (MSWD = 1.05; P = 0.40) is presented in supplementary Fig. A.5 (see also Table B.1). A 236 

significantly younger Pb-Pb isochron date of 4270±10 Ma is obtained for the basaltic impact melt clast 237 

(Table 1; Fig. 4e). 238 

In addition to having indistinguishable Pb-Pb isochron dates, the least radiogenic Pb isotopic 239 

compositions measured in the three basaltic clasts are also similar (Table 1). As such, x-y weighted 240 

average values were calculated using five plagioclase analyses (one from Clast 1 and two from both 241 

Clast 4 and Clast 10), yielding a Pb isotopic composition of 
204

Pb/
206

Pb = 0.0251±0.0023, 
207

Pb/
206

Pb = 242 

1.596±0.030 and 
208

Pb/
206

Pb = 1.339±0.026 (2σ) (Table 1; Fig. 4f). This is interpreted as providing the 243 

best estimate (i.e. lowest possible value) for the initial Pb isotopic composition of the basaltic protolith 244 

from which the clasts originated. 245 

A majority of the matrix mineral grains analysed (K-rich glass and mesostasis areas) have 246 

compositions consistent with being derived from the same basaltic precursor, albeit with varying 247 

degrees of terrestrial contamination (Fig. 5; Table B.1). Two analyses of K-rich glass in the matrix 248 
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have significantly more radiogenic compositions, plotting above and left of the combined isochron for 249 

the basalt clasts (Fig. 5a). 250 

Plotting the 
208

Pb/
206

Pb ratios against 
204

Pb/
206

Pb and 
207

Pb/
206

Pb, the filtered datasets for each of the 251 

basalt clasts lie on a plane in the 3D coordinate space. Although the initial Pb compositions converge 252 

at a 
208

Pb/
206

Pb ratio of 1.344±0.024, the measurements of phases containing more Pb from in situ 253 

radiogenic decay spread out, such that the purely radiogenic endmember compositions would be 254 

between 
208

Pb/
206

Pb ~0.4-5.1 (Figs. 6a-d). This range in radiogenic 
208

Pb/
206

Pb ratios is interpreted as 255 

variability in 
232

Th/
238

U ratios between different mineral phases within the samples. Taking the 256 

crystallisation age of the basalt clasts into account, these 
208

Pb/
206

Pb values would correspond to 257 

232
Th/

238
U ratios of between ~0.0-4.8. A similar relationship is observed for the 

208
Pb/

206
Pb, 

204
Pb/

206
Pb 258 

and 
207

Pb/
206

Pb ratios in impact melt Clast 2, with the range of radiogenic 
208

Pb/
206

Pb ratios (between 259 

~0.4-7.0; Fig. 6e) equating to 
232

Th/
238

U ratios of between ~0.1-6.7. 260 

Kalahari 009 261 

The five phosphates analysed in the Kal 009 thin sections with the most radiogenic compositions (i.e. 262 

the lowest 
204

Pb/
206

Pb and 
207

Pb/
206

Pb ratios) yield a combined weighted average 
207

Pb/
206

Pb date of 263 

4369±7 Ma (MSWD = 0.57; P = 0.68; Fig. 7), when corrected for the presence of terrestrial 264 

contamination (assuming the modern day terrestrial Pb model values of Stacey and Kramers 1975). 265 

Several measurements were also made of the Ca- and K-rich material filling fractures in the sections 266 

and the K-rich ‘cauliflower-like’ structures identified by Sokol et al. (2008). The Pb isotopic 267 

compositions from these measurements plot in the same vicinity as the Stacey and Kramers (1975) 268 

model composition for modern terrestrial Pb. As such, the values from these Ca- and K-rich phases 269 

can be combined with all but one of the phosphate analyses (phosphate analysis “@3” in section 2; 270 

Table B1), to construct a weighted regression line (independent of the model value from Stacey and 271 

Kramers 1975), which would also equate to a date of 4369±7 Ma (MSWD = 0.41; P = 0.91; Fig. 8). 272 

This weighted regression line would essentially represent the bottom edge of the three-component 273 
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mixing triangles described in the previous section (see also Fig. 3), with the outlier phosphate datum 274 

lying within the mixing triangle for the Kal 009 sample. 275 

4. Discussion 276 

4.1. Interpretation of MIL 13317 isochrons 277 

Given the crystalline nature of the MIL 13317 basalt clasts and the similarity in the Pb isotopic 278 

compositions, the isochron dates are interpreted as representing the age of crystallisation for the 279 

original igneous basalt protolith from which Clasts 1, 4, 10 and 22 were sourced. This 4332±2 Ma 280 

crystallisation age is slightly younger than the 
207

Pb/
206

Pb dates (4352±9 Ma) determined for 281 

phosphate and tranquillityite grains in the meteorite by Shaulis et al. (2016). This either suggests that 282 

the clasts originated from a separate igneous precursor to that of the previously analysed grains, or that 283 

there is an inaccuracy with either the 
207

Pb/
206

Pb dates or those derived from the Pb-Pb isochrons that 284 

is not reflected in the stated uncertainties. One likely source of such inaccuracy in the 
207

Pb/
206

Pb dates 285 

would be an inappropriate correction of the 
207

Pb/
206

Pb ratios for the presence of terrestrial 286 

contamination if the analyses actually sampled small amounts of a lunar initial Pb component. Given 287 

the very radiogenic nature of lunar Pb isotopic compositions (Snape et al. 2016) when compared with 288 

those of terrestrial systems (Stacey and Kramers 1975; Zartman and Doe 1981; Kramers and 289 

Tolstikhin 1997), correction of data with lunar Pb isotopic compositions will result in lower 290 

207
Pb/

206
Pb ratios and younger dates than if the data are corrected with terrestrial compositions (or if 291 

they are not corrected at all). The Pb-Pb isochron approach used here to determine the crystallisation 292 

ages of the MIL 13317 clasts bypasses the need for a correction with an assumed composition by 293 

measuring multiple phases that include varying proportions of Pb generated by radiogenic decay of U 294 

and Th since the rock first crystallised and lunar initial Pb. Therefore, it is possible that the grains 295 

analysed by Shaulis et al. (2016) may in fact be slightly younger than the reported 
207

Pb/
206

Pb dates 296 

and closer to the crystallisation age inferred for the basaltic clasts based on the Pb-Pb isochrons. 297 

Despite this caveat regarding the 
207

Pb/
206

Pb dates, analyses of matrix baddeleyite grain by Curran et 298 

al. (in review) made on the same CAMECA IMS 1280 instrument with a similar methodology to this 299 

study, yield compositions lying just above the combined basaltic clast isochron (Fig. 5b), indicating 300 
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that there may indeed be a separate slightly older igneous precursor that has been sampled by the 301 

meteorite, but which is less well preserved than the basalt clasts. 302 

The more radiogenic outlying analyses from each of the clasts (those positioned above and left of the 303 

basalt clast isochrons) are interpreted as contamination from a KREEP-rich lunar component in the 304 

breccia matrix, which occurred during alteration of the basaltic clasts, most likely as a result of an 305 

impact. This could also provide a potential source for the radiogenic compositions measured in two of 306 

the K-rich glass grains, and would also be consistent with preliminary studies of the meteorite 307 

geochemistry indicating that some proportion of the matrix material originated from a more KREEP-308 

rich lithology (Zeigler and Korotev 2016). Furthermore, petrologic evidence of such alteration in the 309 

basalt clasts exists in the form of melt veins which cross-cut the other phases in the clasts (Fig. 9a), 310 

and post-analysis SEM and EDS mapping imagery of the SIMS spots indicate the presence of small 311 

(sub-micron) Zr-rich phases (Fig. 9b-c). 312 

The 4270±10 Ma isochron date determined for the basaltic impact melt Clast 2 is similar to dates 313 

obtained for phosphate and baddeleyite grains in the matrix of the meteorite by Shaulis et al. (2016). 314 

Although this younger date was interpreted by Shaulis et al. (2016) as the crystallisation age of a 315 

younger igneous protolith, the association with an impact melt clast indicates that it may, in fact, 316 

represent an impact event. It is not clear if the location of this clast, adjacent to Clast 10, is 317 

coincidental or indicates that the impact melt was generated by melting of the same basaltic material, 318 

but there is no clear evidence in the Pb isotopic compositions of the two clasts to argue against such a 319 

petrogenetic link.  320 

4.2. Initial Pb composition of MIL 13317 basalt  321 

The basalt crystallisation age and best estimate for the initial Pb isotopic composition determined from 322 

the clasts in MIL 13317 have been compared with the multiple stage model for the Pb isotopic 323 

evolution of lunar silicate reservoirs in the Moon presented by Snape et al. (2016) (Fig. 10). This 324 

model was calculated using the measured initial Pb isotopic compositions and ages of several Apollo 325 

mare and KREEP basalts, with the assumption that these could be formed from a common source (i.e. 326 
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undifferentiated bulk Moon). In the context of this model the bulk Moon evolved from a primitive, 327 

Canyon Diablo Troilite (CDT), composition until 4376±18 Ma. At this point, the model indicates that 328 

there was a major differentiation event (t1 in Fig. 10a), resulting in the formation of mantle sources 329 

with distinct 
238

U/
204

Pb ratios (µ2-values), from which the lunar KREEP and mare basalts were 330 

sourced. The timing of this differentiation event is also consistent with Sm-Nd model ages (4360±60 331 

Ma: Lugmair and Carlson 1978;        
    Ma: Nyquist et al. 1995; 4389±45 Ma: Gaffney and Borg 332 

2014) and Lu-Hf isotopic model ages (4350-4430 Ma: Sprung et al. 2013; 4353±37 Ma: Gaffney and 333 

Borg 2014; ~4340 Ma: McLeod et al. 2014). After 4376±18 Ma, the mantle sources of the mare 334 

basalts evolved with µ2-values of 360-650, while the sources of the KREEP basalts had µ2-values of 335 

approximately 2600-3700. This model is inevitably a simplification of lunar mantle differentiation, 336 

which almost certainly would not have occurred as a single instantaneous event, with some of the 337 

mantle sources forming earlier (such as the mafic cumulates from which the mare basalts originated). 338 

As was discussed by Snape et al. (2016), the model differentiation point most likely provides an 339 

average approximation for the final stages of LMO crystallisation, including the formation of the 340 

anorthositic highland crust and the KREEP-rich reservoir (urKREEP: Warren and Wasson 1979). 341 

Despite previous attempts to constrain source µ-values and formation times for the anorthositic crust 342 

(e.g. Premo et al. 1999), it is not possible to resolve these different stages of LMO crystallisation in the 343 

framework of this model without more unambiguous measurements of initial Pb isotopic compositions 344 

for the primary products of these processes (i.e. pristine ferroan anorthosite samples). 345 

The initial Pb isotopic composition determined for the three basaltic clasts in MIL 13317 is consistent 346 

with the model growth curves previously predicted for the sources of Apollo basalts (Snape et al. 347 

2016; Fig. 10), and the similarity in time and composition with the predicted differentiation point 348 

provides valuable support for the model. Unfortunately, this similarity with the model differentiation 349 

composition also means that the µ-value for the source of the basalt clasts cannot be estimated with the 350 

same level of precision as those for the basalts in the Snape et al. (2016) study, as the MIL 13317 351 

basalt composition lies at a point in the model where the growth curves for the different reservoirs are 352 

very close together. Nonetheless, assuming that the source of the basalts began to evolve from the 353 
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model composition at 4376±18 Ma (
204

Pb/
206

Pb = 0.036±0.004; 
207

Pb/
206

Pb = 1.59±0.02), then it would 354 

have evolved with a µ-value of 920±350 (2σ). As such, the source of the MIL 13317 basalts appears to 355 

have been more similar to those of relatively KREEP-poor Apollo mare basalts than KREEP-rich 356 

samples (including the Apollo 14 high-Al basalt, 14072, and the Apollo 15 KREEP basalt, 15386). 357 

This is consistent with mineral chemistries of the pyroxene and plagioclase grains in Clasts 1 and 4 358 

reported by Curran et al. (2016), which were found to be similar to those from VLT and low-Ti Apollo 359 

mare basalts. 360 

4.3. Interpretation of Kalahari 009 data 361 

The 4369±7 Ma date determined for the phosphates in Kal 009 is consistent with the previous 362 

phosphate U-Pb date of 4350±150 Ma (Terada et al. 2007) and the Lu-Hf date of 4286±95 Ma (Sokol 363 

et al. 2008), and slightly older than the Sm-Nd date (4300±50 Ma) determined by Shih et al. (2008). 364 

Following the earlier discussion regarding correction of 
207

Pb/
206

Pb ratios (Section 4.1), the case for 365 

correcting the Kal 009 phosphate data with a modern day terrestrial Pb model composition is 366 

supported by the fact that the phosphate Pb isotopic compositions (including those measured by 367 

Terada et al. 2007) and those of the terrestrial weathering products in the sections lie on a regression 368 

line, which passes through the Stacey and Kramers (1975) model composition for modern terrestrial 369 

Pb. The single phosphate measurement that falls above the regression line (Fig. 8a) is interpreted as 370 

containing the highest measured proportion of a lunar initial Pb component, but without more 371 

measurements that can be confidently ascribed to this component it is not possible to place any 372 

compositional constraint on an initial lunar Pb component. 373 

Terada et al. (2007) interpreted their U-Pb phosphate date as representing the crystallisation age of the 374 

Kal 009 basalt. In contrast to this interpretation, the potential for resetting of the U-Pb isotope system 375 

in phosphates (Cherniak et al. 1991; Chamberlain and Bowring 2001) has been previously taken 376 

advantage of for dating the thermal history of lunar impact breccias (e.g. Nemchin et al. 2009; 377 

Thiessen et al. 2017; 2018). The brecciated nature of Kal 009 raises the possibility that the Pb isotopic 378 

compositions of the phosphates may be recording an impact event that occurred after the basalt 379 
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originally crystallised. Without measurements of phases that are known to be more resistant to 380 

resetting of their U-Pb systems (e.g. zircon; Cherniak et al. 1991), it is impossible to be sure from the 381 

Pb isotope data alone that the 4369±7 Ma date is indeed an igneous crystallisation age, although it is 382 

clear that the VLT basalt sampled by Kal 009 must have erupted by this time. Furthermore, the 383 

consistency with the Sm-Nd and Lu-Hf ages provides additional support for this representing the 384 

crystallisation age of the basalt. 385 

4.4. Ancient lunar volcanism  386 

These new estimates for the ages of the basaltic material sampled by MIL 13317 and Kal 009, 387 

combined with the distinct compositions of this basaltic material (Sokol et al. 2008; Zeigler and 388 

Korotev 2016; Curran et al. 2016), support the findings from remote sensing studies of cryptomare 389 

deposits (Whitten and Head 2015a), that ancient basaltic volcanism of the Moon produced range of 390 

basalt compositions, potentially mirroring that seen in the younger (3800-3000 Ma) mare basalts. 391 

Sokol et al. (2008) cited the low-ITE compositions of Kal 009 and its likely pair, Kal 008, as evidence 392 

that the meteorites originated from lunar regolith far from the KREEP-rich lithologies of the nearside 393 

Procellarum-KREEP Terrane (Jollif et al. 2000). By comparison, the preliminary studies of MIL 394 

13317 indicate that the breccia likely originated from a regolith with a KREEP component (Zeigler 395 

and Korotev 2016). Therefore, these meteorites also provide evidence of ancient lunar basaltic 396 

volcanism occurring in different regions on the Moon. 397 

The low-ITE abundances in Kal 009 suggest that the basalt parent magma did not assimilate any 398 

KREEP-rich material during ascent to the lunar surface. This was previously interpreted as evidence 399 

that either the urKREEP reservoir was not present as a global layer around the crust-mantle boundary 400 

of the Moon, or that the urKREEP reservoir had not formed prior to the Kal 009 magmatism (Terada 401 

et al. 2007). Seeing as the age of Kal 009 (4369±7 Ma) is within error of the Pb model differentiation 402 

age (4376±18 Ma; Snape et al. 2016), both of these options remain viable explanations for the low-403 

ITE abundances in the meteorite. 404 
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Finally, the occurrence of basaltic volcanism so early in the evolution of the Moon necessitates that 405 

there was a mechanism to trigger this magmatic activity almost immediately after LMO crystallisation. 406 

Terada et al. (2007) reviewed previous models for lunar basaltic magmatism (Shearer et al. 2006) in 407 

relation to Kal 009. They concluded that the low-ITE abundances in the Kal 009 basalt argued against 408 

internal heating and melting of the mantle cumulates by radioactive elements present in the source 409 

(Wieczorek and Phillips 2000), and that models for large-scale gravitationally driven overturn of the 410 

lunar mantle causing mare magmatism several hundred million years after LMO crystallisation (e.g. 411 

Hess and Parmentier 1995) were difficult to reconcile with the age of the Kal 009 basalt. This second 412 

argument, in particular, is further emphasized by the more precise dating of the meteorite, which 413 

places it towards the older end of the age range provided by the previous U-Pb and Lu-Hf studies 414 

(Terada et al. 2007; Sokol et al. 2008), and a similar argument can be made regarding the age of the 415 

MIL 13317 basalts (4332±2 Ma). Additionally, despite the presence of KREEP-rich material in the 416 

regolith that formed the MIL 13317 breccia, the initial Pb isotopic compositions and associated µ-417 

values of the basaltic clasts indicate an absence of significant amounts of ITE- or KREEP-rich 418 

material in the sources of the MIL 13317 basaltic components. Having argued against these two 419 

mechanisms, Terada et al. (2007) proposed that impact driven melting of the lunar mantle (Elkins-420 

Tanton et al. 2004) provided the most likely mechanism for generating the Kal 009 basaltic magma. If 421 

this is the case, then the distinct ages of the basalts identified in these two meteorites suggest that this 422 

was not an isolated incident in the Moon’s magmatic evolution. 423 

5. Conclusions 424 

The Pb isotopic data presented in this study confirm the ancient ages of basaltic material in the MIL 425 

13317 (4332±2 Ma) and Kal 009 (4369±7 Ma) meteorites (Terada et al. 2007; Sokol et al. 2008; 426 

Shaulis et al. 2016). Additionally, the MIL 13317 meteorite provides evidence of an impact event at 427 

4270±10 Ma, based on the age determined for a basaltic impact melt clast. It was also possible to 428 

determine an initial Pb isotopic composition for the basalt clasts in MIL 13317, which is consistent 429 

with the Pb isotope evolution model of the Moon previously presented by Snape et al. (2016). Based 430 

on this initial Pb isotopic composition, the source of the MIL 13317 basalt appears to have evolved 431 
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with a µ-value of 850±280, more consistent with many of the Apollo mare basalts, rather than 432 

KREEP-rich lithologies. 433 

The basaltic material in the MIL 13317 and Kal 009 meteorites provides evidence of the earliest 434 

known basaltic lunar volcanism. Based on the compositions of the meteorites, this early volcanic 435 

activity appears to have generated a range of basalt varieties in different locations on the Moon. These 436 

new Pb isotopic data and crystallisation ages are consistent with the hypothesis that large basin 437 

forming impacts on the Moon could have led to multiple periods of ancient basaltic magmatism 438 

(Elkins-Tanton et al. 2004; Terada et al. 2007). 439 
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Figure captions 611 

Figure 1. – (a) Back Scattered Electron (BSE) image of the MIL 13317,7 thin section with the clasts 612 

analysed in this study annotated. More detailed images of the individual clasts are provided in panels 613 

(b-e). Plag – plagioclase; Pyx – pyroxene; Sil – silica. 614 

Figure 2. – Back Scattered Electron (BSE) images of typical textures in the Kal 009 meteorite. The 615 

dashed line in panel (a) indicates the approximate boundary between an area of more well preserved 616 

igneous texture and the more common brecciated texture in the meteorite, where the phosphates 617 

analysed in this study were located. The effects of terrestrial weathering and contamination are 618 

apparent in veins and fractures throughout the sample, which are commonly filled with either Ca-rich 619 

material (BSE image and corresponding Ca X-ray element map in panels (b-c)) or K-rich material 620 

(BSE image and corresponding K X-ray element map in panels (d-e)). Note, the brightest areas in the 621 

BSE images are the remnants of gold coating from previous SIMS analyses present in cracks and 622 

divots in the sections. 623 

Figure 3. – 
207

Pb/
206

Pb vs. 
204

Pb/
206

Pb plots of the complete datasets from (a) the four basaltic clasts 624 

and (b) the impact melt clast in MIL 13317. The grey triangles represent the predicted range of 625 

compositions that would result from three-component mixing between the initial Pb isotopic 626 

compositions of the rocks, the more radiogenic Pb generated by the decay of U after the rocks formed 627 

and a terrestrial contaminant (represented here with the model composition of modern terrestrial Pb 628 

presented by Stacey and Kramers 1975; “S+K”). Analyses (plotted in partially transparent symbols) 629 

lying to the right of sample isochron (i.e. the left side of the triangle) and within this mixing triangle 630 

are filtered out as containing significant amounts of terrestrial contamination. 631 

Figure 4. – 
207

Pb/
206

Pb vs. 
204

Pb/
206

Pb plots of the filtered data sets for the MIL 13317 basalt clasts (a-632 

e). A combined isochron and initial Pb isotopic composition was generated for the four basaltic clasts 633 

with ages of ~4330 Ma (f). Error bars represent 2σ uncertainties and uncertainties for the isochron 634 

dates are stated at the 95% confidence level. 635 
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Figure 5. – (a) 
207

Pb/
206

Pb vs. 
204

Pb/
206

Pb plot of data from the MIL 13317 matrix grains. An expanded 636 

plot of the most radiogenic compositions is shown in panel (b). Error bars represent 2σ uncertainties. 637 

The combined isochron for the four ~4330 Ma basaltic clasts in the sample (see Fig. 3) has also been 638 

indicated for comparison with the matrix grain compositions. The matrix phosphate, baddeleyite and 639 

zircon data are from Curran et al. (in review). Error bars represent 2σ uncertainties. 640 

Figure 6. – 
208

Pb/
206

Pb vs. 
204

Pb/
206

Pb plots of the filtered data sets for the five MIL 13317 basalt 641 

clasts. Grey triangular fields mark the range of compositions in each sample. Error bars represent 2σ 642 

uncertainties. 643 

Figure 7. – 
207

Pb/
206

Pb ages for phosphate grains in Kal 009. The ages were calculated from 
207

Pb/
206

Pb 644 

ratios corrected for the presence terrestrial Pb, using the model composition of Stacey and Kramers 645 

(1975). Box heights represent 2σ uncertainties. 646 

Figure 8. – (a) 
204

Pb/
206

Pb vs. 
207

Pb/
206

Pb plot of data from Kal 009. A regression through the majority 647 

of the analyses equates to an age of 4369±7 Ma (95% conf.), while a single outlying phosphate 648 

analysis (partially transparent symbol) would lie within a mixing triangle between the initial Pb 649 

composition of the basalt, the radiogenic Pb from decay of U after the basalt crystallised and a 650 

terrestrial contaminant. (b) The data collected in this study have been compared with the Stacey and 651 

Kramers (1975) model composition for modern day terrestrial Pb (S+K) and the phosphate analyses 652 

previously made by Terada et al. (2007). Error bars represent 2σ uncertainties. Note that, despite 653 

falling on the regression line through the sample data points, the Stacey and Kramers (1975) model 654 

value was not included in the calculation of this line, but its inclusion in this plot demonstrates why 655 

equivalent age estimates for Kal 009 are obtained from both this regression and the weighted average 656 

of the terrestrial common Pb corrected phosphate 
207

Pb/
206

Pb ages 657 

Figure 9. – (a) BSE image of the Clast 1 boundary (dashed white line) with breccia matrix in MIL 658 

13317.  Vein originating from the matrix and penetrating into the clast is indicated with white arrows. 659 

(b) BSE image showing the location of SIMS spot (dashed white ellipse) in Clast 4 of MIL 13317, 660 

which provided radiogenic outlier K-rich glass composition. A BSE-bright fleck of Zr-rich material 661 
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was identified in the SIMS target area, in addition to a number of other compositional heterogeneities 662 

and a nearby vein, which are apparent in the element maps of the area (c-e). 663 

Figure 10. – (a) Schematic chart outlining the multi-stage Pb isotopic evolution model of Snape et al. 664 

(2016), the solid arrows indicate the stages represented in the model calculations. (b) Initial Pb 665 

isotopic composition of the MIL 13317 basalt clasts compared with the model of Snape et al. (2016). 666 

The model is calculated assuming lunar formation at 4500 Ma and a primitive starting composition of 667 

Canyon Diablo Troilite (CDT; Göpel et al. 1985). In the model, an undifferentiated bulk Moon with a 668 

µ1-value of ~460 evolves until 4376±18 Ma. The mantle sources of the main Apollo basaltic suites can 669 

all be modelled as originated from the model differentiation composition with distinct µ2-values. The 670 

initial Pb isotopic compositions of the Apollo 11 high-Ti basalt 10044, Apollo 12 low-Ti basalts 671 

12038, 12039 and 12063, the KREEP-rich Apollo 14 high-Al basalts 14072 and the KREEP basalt 672 

15386 have also been plotted for comparison (data originally presented in Snape et al. 2016). (c) 673 

Focusing just on the region between the model differentiation point at 4376±18 Ma and the MIL 674 

13317 basalts, the µ2-value (920±350; 2σ) necessary to form this composition within the model 675 

framework, would have been more similar to that attributed to the Apollo mare basalt sources than that 676 

of the high-µ KREEP basalt sources. Error bars and the Pb growth curve fields represent 2σ 677 

uncertainties. 678 

Table 1 – Summary of the 
207

Pb/
206

Pb isochron dates determined for each of the basalt clasts in MIL 679 

13317, as well as the combined isochron for the basalt clasts (Clasts 1, 4, 10 and 22). Also included 680 

are the best estimates for the initial Pb isotopic composition of the clasts, where it was possible to 681 

determine one. Uncertainties for the isochron dates are stated at the 95% confidence level. 682 

Supplementary material 683 

Appendix A – Supplementary Figures 684 

Figure A.1. – Back Scattered Electron (BSE) maps of the MIL 13317,7 (a) and the Kal 009 (b-c) thin 685 

sections analysed in this study.  686 
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Figure A.2. – Pyroxene compositions of Kal 009 (Sokol et al. 2008) compared with those of Apollo 12 687 

(Boyd and Smith 1971; Dence et al. 1971; Weill et al. 1971; Hollister et al. 1971; Keil et al. 1971; 688 

Shearer et al. 1989; Alexander et al. 2014) and 15 (Walker et al. 1977) low-Ti basalts, as well as those 689 

in VLT gabbro MIL 05035 (Joy et al. (2008). 690 

Figure A.3. – Plagioclase compositions of Kal 009 (Sokol et al. 2008) compared with those of Apollo 691 

12 low-Ti basalts (Taylor et al. 1971; Keil et al. 1971; Crawford et al. 1973; Alexander et al. 2014) 692 

and VLT gabbro MIL 05035 (Joy et al. (2008). 693 

Figure A.4. – Complete datasets from the MIL 13317 clasts plotted to show the data that were filtered 694 

out to generate the isochrons for each clast. 695 

Figure A.5. – Alternative isochron (black dashed line) for the basaltic clasts in MIL 13317 696 

incorporating the outlier compositions described in the main text. Note that the resulting isochron date 697 

(4330±3 Ma; MSWD = 1.05; P = 0.4) is within error of the combined basalt clast isochron presented 698 

in the main text (indicated here by the grey dashed line), primarily due to the very low 
204

Pb/
206

Pb 699 

ratios of the most radiogenic analyses (i.e. those with the lowest 
204

Pb/
206

Pb and 
207

Pb/
206

Pb ratios). An 700 

expanded plot of the most radiogenic analyses has been included in panel (b) for extra clarity. 701 

Appendix B – Supplementary Tables 702 

Table B.1. – Complete SIMS datasets. 703 

Table B.2. – Average electron multiplier background levels for each analytical session.  704 

Table B.3. – Average measured values of the GOR 132-G and BCR-2G reference materials during 705 

each analytical session. 706 



Figure
Click here to download Figure: snape_et_al_MIL13317_figs_low-res.pdf

http://ees.elsevier.com/epsl/download.aspx?id=1027794&guid=68854955-e5fe-46b7-a1af-580b8ba42140&scheme=1
















 



  

Figure (high-resolution)
Click here to download Figure (high-resolution): snape_et_al_MIL13317_figs.pdf

http://ees.elsevier.com/epsl/download.aspx?id=1027795&guid=8e30ee78-73ab-4ac3-9794-80c9ff7ae67d&scheme=1


Table 1

207
Pb/

206
Pb isochron 

date (Ma)
± MSWD Probability of fit 204

Pb/
206

Pb ±2σ

Clast 1 4335 4 0.53 0.87 0.025 0.006

Clast 4 4333 3 0.75 0.78 0.027 0.004

Clast 10 4328 7 0.60 0.73 0.025 0.003

Clast 22 4331 7 1.12 0.34

Clast 2 4270 10 0.86 0.49

Combined 

basaltic clasts 4332 2 1.19 0.18 0.025 0.002

Isochron details Initial Pb isotopic composition (best estimate)

Not determined

Not determined
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