289 research outputs found

    Sustainability of boreal and subarctic environment to nature-based tourism

    Get PDF

    Task-oriented reading efficiency: interplay of general cognitive ability, task demands, strategies and reading fluency

    Get PDF
    The associations among readers’ cognitive skills (general cognitive ability, reading skills, and attentional functioning), task demands (easy versus difficult questions), and process measures (total fixation time on relevant and irrelevant paragraphs) was investigated to explain task-oriented reading accuracy and efficiency (number of scores in a given time unit). Structural equation modeling was applied to a large dataset collected with sixth-grade students, which included samples of dysfluent readers and those with attention difficulties. The results are in line with previous findings regarding the dominant role of general cognitive ability in the accuracy of task-oriented reading. However, efficiency in task-oriented reading was mostly explained by the shorter viewing times of both paragraph types (i.e., relevant and irrelevant), which were modestly explained by general cognitive ability and reading fluency. These findings suggest that high efficiency in task orientation is obtained by relying on a selective reading strategy when reading both irrelevant and relevant paragraphs. The selective reading strategy seems to be specifically learned, and this potentially applies to most students, even those with low cognitive abilities

    Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates

    Get PDF
    BACKGROUND: The beta-carbonic anhydrase (CA, EC 4.2.1.1) enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the beta-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster. RESULTS: The novel beta-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of beta-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 x 105 s-1 and a kcat/KM of 1.1 x 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM) and more potently by sulfamide (KI of 0.15 mM). Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM). CONCLUSIONS: The Drosophila beta-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development

    Acoustic Emission from Paper Fracture

    Get PDF
    We report tensile failure experiments on paper sheets. The acoustic emission energy and the waiting times between acoustic events follow power-law distributions. This remains true while the strain rate is varied by more than two orders of magnitude. The energy statistics has the exponent β1.25±0.10\beta \sim 1.25 \pm 0.10 and the waiting times the exponent τ1.0±0.1\tau \sim 1.0 \pm 0.1, in particular for the energy roughly independent of the strain rate. These results do not compare well with fracture models, for (brittle) disordered media, which as such exhibit criticality. One reason may be residual stresses, neglected in most theories.Comment: 4 pages, 5 figure

    Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry

    Get PDF
    Abstract BACKGROUND: The genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. METHODS: In this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates. RESULTS: Six β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. CONCLUSIONS: The predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that β-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebratesBioMed Central open acces

    Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry

    Get PDF
    BACKGROUND: The genomes of many insect and parasite species contain beta carbonic anhydrase (&beta;-CA) protein coding sequences. The lack of &beta;-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. METHODS: In this study, we analyzed a multiple sequence alignment of 31 &beta;-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for &beta;-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis &beta;-CAs as templates. RESULTS: Six &beta;-CAs of insects and parasites and six &beta;-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved &beta;-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. CONCLUSIONS: The predicted mitochondrial localization of several &beta;-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that &beta;-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebrates.</p

    Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1

    Get PDF
    Carbonic anhydrases (CA) catalyze the reversible hydration of CO2 to protons and bicarbonate and thereby play a fundamental role in the epithelial acid/base transport mechanisms serving fluid secretion and absorption for whole-body acid/base regulation. The three carbonic anhydrase-related proteins (CARPs) VIII, X, and XI, however, are catalytically inactive. Previous work has shown that some CA isoforms noncatalytically enhance lactate transport through various monocarboxylate transporters (MCT). Therefore, we examined whether the catalytically inactive CARPs play a role in lactate transport. Here, we report that CARP VIII, X, and XI enhance transport activity of the MCT MCT1 when coexpressed in Xenopus oocytes, as evidenced by the rate of rise in intracellular H+ concentration detected using ion-sensitive microelectrodes. Based on previous studies, we suggest that CARPs may function as a 'proton antenna' for MCT1, to drive proton-coupled lactate transport across the cell membrane
    corecore