27 research outputs found

    Verification of Gyrokinetic codes: theoretical background and applications

    Full text link
    In fusion plasmas the strong magnetic field allows the fast gyro-motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the subsequent transport. Naturally, these codes require thorough verification and validation. Here we present a new and generic theoretical framework and specific numerical applications to test the faithfulness of the implemented models to theory and to verify the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which has rarely been done and therefore makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The verification of numerical scheme is proposed via the benchmark effort. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC) and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations implemented in the ORB5 and GENE codes using the Lagrangian variational formulation. At the computational level, detailed verifications of global electromagnetic test cases developed from the CYCLONE Base Case are considered, including a parametric β\beta-scan covering the transition from ITG to KBM and the spectral properties at the nominal β\beta value.Comment: 16 pages, 2 Figures, APS DPP 2016 invited pape

    Sub-grid-scale effects in magnetised plasma turbulence

    Get PDF
    In the present paper, we use a coarse-graining approach to investigate the nonlinear redistribution of free energy in both position and scale space for weakly collisional magnetised plasma turbulence. For this purpose, we use high-resolution numerical simulations of gyrokinetic (GK) turbulence that span the proton-electron range of scales, in a straight magnetic guide field geometry. Accounting for the averaged effect of the particles' fast gyro-motion on the slow plasma fluctuations, the GK approximation captures the dominant energy redistribution mechanisms in strongly magnetised plasma turbulence. Here, the GK system is coarse-grained with respect to a cut-off scale, separating in real space the contributions to the nonlinear interactions from the coarse-grid-scales and the sub-grid-scales (SGS). We concentrate on the analysis of nonlinear SGS effects. Not only that this allows us to investigate the flux of free energy across the scales, but also to now analyse its spatial density. We find that the net value of scale flux is an order of magnitude smaller than both the positive and negative flux density contributions. The dependence of the results on the filter type is also analysed. Moreover, we investigate the advection of energy in position space. This rather novel approach for GK turbulence can help in the development of SGS models that account for advective unstable structures for space and fusion plasmas, and with the analysis of the turbulent transport saturation.Comment: 15 figures Accepted for publication by Journal of Plasma Physic

    Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    Full text link
    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.Comment: 7 pages, 3 figure

    Structure of Plasma Heating in Gyrokinetic Alfvénic Turbulence

    Get PDF
    We analyze plasma heating in weakly collisional kinetic Alfv\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. J ⁣ ⁣(E+ve×B)\mathbf{J} \!\cdot\! (\mathbf{E} + \mathbf{v}_e\times\mathbf{B}), as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.Comment: 5 pages, 3 figure

    Gyrokinetic turbulence:between idealized estimates and a detailed analysis of nonlinear energy transfers

    Get PDF
    Using large resolution numerical simulations of GK turbulence, spanning an interval ranging from the end of the fluid scales to the electron gyroradius, we study the energy transfers in the perpendicular direction for a proton-electron plasma in a slab magnetic geometry. In addition, to aid our understanding of the nonlinear cascade, we use an idealized test representation for the energy transfers between two scales, mimicking the dynamics of turbulence in an infinite inertial range. For GK turbulence, a detailed analysis of nonlinear energy transfers that account for the separation of energy exchanging scales is performed. We show that locality functions associated with the energy cascade across dyadic (i.e. multiple of two) separated scales achieve an asymptotic state, recovering clear values for the locality exponents. We relate these exponents to the energy exchange between two scales, diagnostics that are less computationally intensive than the locality functions. It is the first time asymptotic locality is shown to exist for GK turbulence and the contributions made by highly non-local interactions, previously reported in the literature, are explained as very local transfers of energy that occur between wavenumbers within the same dyadic signal. The results presented here and their implications are discussed from the perspective of previous findings reported in the literature and the idea of universality of GK turbulence

    A New Technique for the Calculation and 3D Visualisation of Magnetic Complexities on Solar Satellite Images

    Get PDF
    YesIn this paper, we introduce two novel models for processing real-life satellite images to quantify and then visualise their magnetic structures in 3D. We believe this multidisciplinary work is a real convergence between image processing, 3D visualization and solar physics. The first model aims to calculate the value of the magnetic complexity in active regions and the solar disk. A series of experiments are carried out using this model and a relationship has been indentified between the calculated magnetic complexity values and solar flare events. The second model aims to visualise the calculated magnetic complexities in 3D colour maps in order to identify the locations of eruptive regions on the Sun. Both models demonstrate promising results and they can be potentially used in the fields of solar imaging, space weather and solar flare prediction and forecasting
    corecore