83 research outputs found

    A new approach for open quantum systems based on a phonon numberrepresentation of a harmonic oscillator bath

    Get PDF
    To investigate a system coupled to a harmonic oscillator bath, we propose a new approach based on a phonon number representation of the bath. Compared to the method of the hierarchical equations of motion, the new approach is computationally much less expensive in a sense that a reduced density matrix is obtained by calculating the time evolution of vectors, instead of matrices, which enables one to deal with large dimensional systems. As a benchmark test, we consider a quantum damped harmonic oscillator, and show that the exact results can be well reproduced. In addition to the reduced density matrix, our approach also provides a link to the total wave function by introducing new boson operators

    Vortex crystals

    Get PDF
    Vortex crystals is one name in use for the subject of vortex patterns that move without change of shape or size. Most of what is known pertains to the case of arrays of parallel line vortices moving so as to produce an essentially two-dimensional flow. The possible patterns of points indicating the intersections of these vortices with a plane perpendicular to them have been studied for almost 150 years. Analog experiments have been devised, and experiments with vortices in a variety of fluids have been performed. Some of the states observed are understood analytically. Others have been found computationally to high precision. Our degree of understanding of these patterns varies considerably. Surprising connections to the zeros of 'special functions' arising in classical mathematical physics have been revealed. Vortex motion on two-dimensional manifolds, such as the sphere, the cylinder (periodic strip) and torus (periodic parallelogram) has also been studied, because of the potential applications, and some results are available regarding the problem of vortex crystals in such geometries. Although a large amount of material is available for review, some results are reported here for the first time. The subject seems pregnant with possibilities for further development.published or submitted for publicationis peer reviewe

    Experimental investigation of the 30S(α, p) thermonuclear reaction in x-ray bursts

    Get PDF
    We performed the first measurement of 30 S+α resonant elastic scattering to experimentally examine the 30 S(α, p) stellar reaction rate in type I x-ray bursts. These bursts are the most frequent thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of accreting neutron star binaries. The 30 S(α, p) reaction plays a critical role in burst models, yet very little is known about the compound nucleus 34 Ar at these energies nor the reaction rate itself. We performed a measurement of alpha elastic scattering with a radioactive beam of 30 S to experimentally probe the entrance channel. Utilizing a gaseous active target system and silicon detector array, we extracted the excitation function from 1.8 to 5.5 MeV near 160° in the center-of-mass frame. The experimental data were analyzed with an R -Matrix calculation, and we discovered several new resonances and extracted their quantum properties (resonance energy, width, spin, and parity). Finally, we calculated the narrow resonant thermonuclear reaction rate of 30 S(α, p) for these new resonances

    SHARAQ Project: Progress in 2009

    Get PDF
    On March 23, 2009, the first beam was successfullytransported to the final focal plane of the SHARAQspectrometer. We investigated detector responses toheavy-ion beams and the ion optical properties ofthe SHARAQ spectrometer1) and the high-resolutionbeam line2) in the subsequent commissioning runs andfound that the system as a whole worked almost as perits design. The first physics run with the spectrometerwas performed in November 2009. In this article, wereview the progress in the SHARAQ project in 2009

    Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known.</p> <p>Methods</p> <p>We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children.</p> <p>Results</p> <p>SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups.</p> <p>Conclusion</p> <p>Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.</p

    Asteroids. From Observations to Models

    Get PDF
    We will discuss some specific applications to the rotation state and the shapes of moderately large asteroids, and techniques of observations putting some emphasis on the HST/FGS instrument.Comment: to appear in LNP; 28pages; written in 2003; Winter School "Dynamique des Corps Celestes Non Ponctuels et des Anneaux", Lanslevillard (FRANCE
    corecore