10 research outputs found

    Protection of p53 wild type cells from taxol by nutlin-3 in the combined lung cancer treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations within the tumor suppressor <it>TP53 </it>gene are one of the most common genetic alterations present at high frequency in human tumors and have been shown to be associated with resistance to radio-chemotherapy. The lack of the wild type <it>TP53 </it>gene in cancer cells could be exploited for therapeutic advantage using a sequence of two antagonistic drugs. The aim of this study was to selectively kill p53 deficient cells (FaDu and H1299) by taxol and to protect p53 wild type cells (A549) by the prior administration of nutlin-3 in comparison to certain known anticancer drugs (5-fluorouracil, camptothecin, roscovitine).</p> <p>Methods</p> <p>Cytotoxic and cytostatic properties of 5-fluorouracil, camptothecin, roscovitine and nutlin-3 administrating alone or in combination with taxol were investigated in vitro by flow cytometry.</p> <p>Results</p> <p>It was found that nutlin-3 induced growth arrest and protected A549 cells from taxol. FaDu and H1299 cells responded to the same treatments with mitotic arrest and massive apoptosis. Other compounds (5-fluorouracil, camptothecin and roscovitine) revealed weaker selectivity and elevated toxicity in comparison to nutlin-3.</p> <p>Conclusions</p> <p>We propose a therapeutic strategy protecting normal cells from taxol while increasing apoptosis selectively in p53-deficient cells using nutlin-3.</p

    Improvement of Radiation-Mediated Immunosuppression of Human NSCLC Tumour Xenografts in a Nude Rat Model

    Get PDF
    Human tumour xenografts in a nude rat model have consistently been used as an essential part of preclinical studies for anticancer drugs activity in human. Commonly, these animals receive whole body irradiation to assure immunosuppression. But whole body dose delivery might be inhomogeneous and the resulting incomplete bone marrow depletion may modify tumour behaviour. To improve irradiation-mediated immunosuppression of human non-small cell lung cancer (NSCLC) xenografts in a nude rat model irradiation (2 + 2 Gy) from opposite sides of animals has been performed using a conventional X-ray tube. The described modification of whole body irradiation improves growth properties of human NSCLC xenografts in a nude rat model. The design of the whole body irradiation mediated immunosuppression described here for NSCLC xenografts may be useful for research applications involving other types of human tumours

    Praćenje metabolizma flavonoida u humanim stanicama na temelju fluorescencije izazvane interakcijom kvercetina s proteinima

    Get PDF
    Despite the wealth of information concerning biological effects of flavonoids, a systematic approach to analyzing the molecular targets is still lacking and, for this reason, a rational evaluation of the risks or benefits of flavonoid-containing foods or of possible pharmaceutical applications is difficult. We have exploited the property of quercetin to elicit fluorescence when bound to specific target proteins and assayed several flavonoids with different modifications (methylation, hydroxylation, glycosylation). Quercetin target proteins can be visualized in living cells, but in vital human leukaemia cells (HL-60) the fluorescence decreases rapidly after labelling, while metabolically inactive apoptotic cells retain the fluorescence. These cytological differences were apparent under the fluorescent microscope and were quantified using flow cytometry. Metabolic conversion of quercetin in vital cells was confirmed and quantified by HPLC analysis. While apoptotic cells still contained considerable amounts of quercetin, vital cells rapidly metabolized the flavonoid (e.g., by methylation or glycosylation). Biochemical results are consistent with the cytological observations and support the conclusion that quercetin becomes rapidly converted to non-fluorogenic metabolites in vital cells. Loss of fluorescence in vital cells allows convenient monitoring and quantifying of the dynamics of quercetin metabolism in human cells.Unatoč mnoštvu informacija koje se odnose na biološke učinke flavonoida, sustavni pristup analizi njihovih ciljnih molekula još uvijek nedostaje. Iz toga razloga vrlo je teško racionalno vrednovati opasnosti ili koristi koje donosi hrana koja sadrži flavonoide kao i njihovu moguću farmakološku primjenu. Iskoristili smo svojstvo kvercetina da izazove fluorescenciju kada se veže za specifične ciljne proteine i analizirali nekoliko različito modificiranih flavonoida (metilacija, hidroksilacija, glikozilacija). Ciljni proteini za koje se kvercetin veže u živim stanicama mogu se vizualizirati na temelju fluorescencije. U živim stanicama humane leukemije (HL-60) fluorescencija naglo pada nakon označavanja flavonoidima, dok metabolički inaktivne apoptotične stanice zadržavaju fluorescenciju. Te su citološke razlike jasno zapažene pod fluorescencijskim mikroskopom, a kvantificirane su pomoću protočne citometrije. Metabolička pretvorba kvercetina u živim stanicama potvr|ena je i kvantificirana pomoću HPLC analiza. Dok apoptotične stanice zadržavaju značajnu količinu kvercetina, žive ga stanice brzo metaboliziraju (npr. metilacijom ili glikozilacijom). Ti su biokemijski rezultati u skladu s citološkim promatranjima i podupiru zaključak da se kvercetin u živim stanicama brzo pretvara u nefluorogene metabolite. Gubitak fluorescencije u živim stanicama omogućava praćenje i kvantifikaciju dinamike metabolizma kvercetina u humanim stanicama

    IV delivery of fluorescent beads

    No full text
    Peer reviewe

    Toxicity and Cell Cycle Effects of Synthetic 8-Prenylnaringenin and Derivatives in Human Cells

    Get PDF
    The estrogenic flavanone rac-8-prenylnaringenin (8-PN) and 3 derivatives (rac-7-(O-prenyl)naringenin-4′-acetate (7-O-PN), rac-5-(O-prenyl)naringenin-4′,7-diacetate (5-O-PN), and rac-6-(1,1-dimethylallyl)naringenin (6-DMAN) were prepared by chemical synthesis and analyzed with respect to their toxicity and possible cell cycle effects in human acute myeloid leukemia (HL-60) cells. With the exception of 5-O-PN, all the other naringenins showed only weak toxic effects at concentrations below 50 μmol/l. A cell cycle analysis over several cell generations up to 4 days was carried out using the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester (CFSE) followed by propidium iodide (PI) staining at the end of the experiment. The well-studied flavonol quercetin was included in the analysis as a reference substance. All flavonoids affected cell proliferation, but the extent and the resulting changes in the proliferation pattern were specific for each substance. In contrast to the radical scavenging activity of quercetin, the tested flavanones showed no anti-oxidative properties using several different test systems. Similarly, the mitochondrial membrane potential (ΔΨm) was hardly effected by these compounds, while both menadione and quercetin strongly reduced the potential after 1 h of treatment. The reported chemical modification of interesting lead substances (like the strongly estrogenic 8-PN) presents a promising approach to modulate the properties of a relevant substance in a pharmacologically desirable way. The low toxicity and weak cytostatic properties of the tested naringenin derivatives is encouraging for further studies on known naringenin target molecules.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis – An animal experimental prospective cohort study

    Get PDF
    Background To investigate vascular-related pathophysiological characteristics of two human lung cancers with modifiable vascularisation using MRI and CT. Methods Tumour xenografts with modifiable vascularisation were established in 71 rats (approval by the Animal Care Committee was obtained) by subcutaneous transplantation of two human non-small-cell lung cancer (NSCLC) cells (A549, H1299) either alone or co-transplanted with vascular growth promoters. The vascularity of the tumours was assessed noninvasively by MRI diffusion-weighted-imaging (DWI), T2-weighted, and time-of-flight (TOF) sequences) as well as contrast-enhanced CT (CE-CT), using clinical scanners. As a reference standard, histological examinations (CD-31, fluorescent beads) were done after explantation. Results Microvessel density (MVD) was higher in co-transplanted tumours (171 ± 19 number/mm2) than in non-co-transplanted tumours (111 ± 11 number/mm2; p = 0.002). Co-transplanted tumours showed higher growth rates and larger tumour vessels at TOF-MRI as well as larger necrotic areas at CE-CT. In co-transplanted tumours, DWI revealed higher cellularity (lower minimal ADCdiff 166 ± 15 versus 346 ± 27 mm2/s × 10−6; p < 0.001), highly necrotic areas (higher maximal ADCdiff 1695 ± 65 versus 1320 ± 59 mm2/s × 10−6; p < 0.001), and better-perfused tumour stroma (higher ADCperf 723 ± 36 versus 636 ± 51 mm2/s × 10−6; p = 0.005). Significant correlations were found using qualitative and quantitative parameters: maximal ADCperf and MVD (r = 0.326); maximal ADCdiff and relative necrotic volume on CE-CT (r = 0.551); minimal ADCdiff and MVD (r = −0.395). Conclusions Pathophysiological differences related to vascular supply in two human lung cancer cell lines with modifiable vascularity are quantifiable with clinical imaging techniques. Imaging parameters of vascularisation correlated with the results of histology. DWI was able to characterise both the extent of necrosis and the level of perfusion

    Genomic engineering of the cystic fibrosis gene in patient-derived iPS cells

    No full text
    Resumen del póster presentado en el "Collaborative Congress of the European Society for Gene and Cell Therapy and the Spanish Society for Gene and Cell Therapy" celebrado del 25 al 28 de octubre de 2013 en Madrid (España)Peer reviewe
    corecore