199 research outputs found

    2-Methoxyestradiol in Pulmonary Arterial Hypertension: A New Disease Modifier

    Get PDF
    Pulmonary arterial hypertension (PAH), a debilitating and incurable disease, predominantly develops in women. Estradiol metabolism leads to the production of numerous metabolites with different levels of estrogenic activity and very often opposing biological effects. Dysregulated estradiol metabolism was recently linked to the penetrance, progression, and prognosis of the disease. Ongoing clinical trials are examining the effects of estradiol synthesis/signaling inhibition in patients with PAH. In this chapter, the effects of sex, sex hormones, and estradiol metabolism on the healthy pulmonary circulation and vascular pathobiology are discussed in the light of estradiol metabolism as potential pharmacological target in PAH. The effects of estrogens and their metabolites on vascular pathobiology and disease progression, their involvement in PAH-associated diseases, and the pros and cons for interventions at different levels of estradiol metabolism are discussed. Finally, we propose that 2-methoxyestradiol (2ME), a major non-estrogenic metabolite of estradiol, mediates at least in part the beneficial effects of estradiol and that 2ME exhibits opposing effects to estradiol on several processes relevant to the underlying pathophysiology of PAH, including angiogenesis, metabolic reprograming, inflammation, and immunity. Based on cellular and in vivo effects, 2ME should be viewed as a disease modifier in women with PAH

    Gender, sex hormones and pulmonary hypertension

    Get PDF
    Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this “estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data

    Long-term caffeine consumption exacerbates renal failure in obese, diabetic, ZSF1 (fa-facp) rats

    Get PDF
    Long-term caffeine consumption exacerbates renal failure in obese, diabetic, ZSF1 (fa-facp) rats.BackgroundOur preliminary studies indicate that chronic caffeine consumption has adverse renal effects in nephropathy associated with high blood pressure and insulin resistance. The purpose of this study was to investigate the effects of early (beginning at 8 weeks of age) and long-term (30 weeks) caffeine treatment (0.1% solution) on renal function and structure in obese, diabetic ZSF1 rats.MethodsMetabolic and renal function measurements were performed at six-week intervals and in a subset of animals (N = 6 per group) heart rate (HR) and mean arterial blood pressure (MABP) were monitored by a radiotelemetric technique. At the end of the study acute, measurements of renal hemodynamics and excretory function were conducted in anesthetized animals.ResultsCaffeine produced a very mild increase (4 to 5%) of MABP and HR, but greatly augmented proteinuria (P < 0.001), reduced creatinine clearance (P < 0.05) and had a mixed effect on metabolic status in obese ZSF1 rats. Caffeine significantly reduced body weight, glycosuria, fasting glucose and insulin levels and improved glucose tolerance, had no effect on elevated plasma triglycerides levels and significantly increased plasma cholesterol level (P < 0.001). Acute measurements of renal function revealed increased renal vascular resistance (95.1 ± 11 vs. 50.7 ± 2.4 mm Hg/mL/min/g kidney, P < 0.01) and decreased inulin clearance (0.37 ± 0.11 vs. 0.97 ± 0.13 mL/min/g kidney, P < 0.002) in caffeine-treated versus control animals, respectively. Caffeine potentiated the development of more severe tubulointerstitial changes (P < 0.05) and increased focal glomerulosclerosis (14.7 ± 1.7 vs. 6.5 ± 0.9%, caffeine vs. control, P < 0.002).ConclusionThe present study provides the first evidence that caffeine (despite improving insulin sensitivity) exacerbates renal failure in obese, diabetic ZSF1 rats. Further mechanistic studies of adverse renal effects of caffeine in chronic renal failure associated with metabolic syndrome are warranted

    Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension

    Get PDF
    &lt;p&gt;Aims: Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH.&lt;/p&gt; &lt;p&gt;Methods and results: Dfen (5 mg kg−1 day−1 PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1−/− mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17ÎČ-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17ÎČ-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice.&lt;/p&gt; &lt;p&gt;Conclusion: CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.&lt;/p&gt

    Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: association with accelerated purine metabolism

    Get PDF
    Pulmonary hypertension (PH) is emerging as a serious complication associated with hemolytic disorders, and plexiform lesions (PXL) have been reported in patients with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se induces PH and angioproliferative vasculopathy and evaluated a new mechanism for hemolysis-associated PH (HA-PH) that involves the release of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy rats, repetitive admin- istration of hemolyzed autologous blood (HAB) for 10 days produced reversible pulmonary parenchymal injury and vascular remodeling and PH. Moreover, the combination of a single dose of Sugen-5416 (SU, 200mg/kg) and 10-day HAB treatment resulted in severe and progressive obliterative PH and formation of PXL (Day 26, right ventricular peak systolic pressure (mmHg): 26.1 1.1, 41.5 0.5 and 85.1 5.9 in untreated, HAB treated and SUĂŸHAB treated rats, respectively). In rats, repeti- tive administration of HAB increased plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD patients had higher plasma ADA and PNP activity and accelerated adenosine, inosine, and guanosine metabolism than healthy controls. Our study provides evidence that hemolysis per se leads to the development of angioproliferative PH. We also report the development of a rat model of HA-PH that closely mimics pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests that in hemolytic diseases released ADA and PNP may increase the risk of PH, likely by abolishing the vasoprotective effects of adenosine, inosine and guanosine. Further characterization of this new rat model of hemolysis-induced angioproliferative PH and additional studies of the role of purines metabolism in HA-PH are warranted

    Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is one of the diseases with a well-established gender dimorphism. The prevalence of PAH is increased in females with a ratio of 4:1, while poor survival prognosis is associated with the male gender. Nevertheless, the specific contribution of gender in disease development and progression is unclear due to the complex nature of the PAH. Oxidative and nitrosative stresses are important contributors in PAH pathogenesis; however, the role of gender in redox homeostasis has been understudied. This review is aimed to overview the possible sex-specific mechanisms responsible for the regulation of the balance between oxidants and antioxidants in relation to PAH pathobiology

    The role of sex in the pathophysiology of pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin

    Personal Drug Selection: Problem-Based Learning in Pharmacology: Experience from a Medical School in Nepal

    Get PDF
    BACKGROUND: At the Manipal College of Medical Sciences, Pokhara, Nepal, Pharmacology is taught during the first four semesters of the undergraduate medical course. Personal or P-drug selection is an important exercise. The present study was carried out to obtain student opinion about the P-drug learning sessions, the assessment examinations, and on the small group dynamics. METHOD: The practical sessions on P-drug selection are carried out in small groups. Student feedback about the session was obtained using focus group discussions. The focus groups were selected to represent both genders and the three main nationalities, Nepalese, Indians, and Sri Lankans. There were four Nepalese, five Indians, and three Sri Lankans. Within each nationality and gender category the students were randomly selected. The respondents were explained the objectives of the study and were invited to participate. Written informed consent was obtained. The discussion lasted around two hours and was conducted in the afternoon in two groups of six students each. The first author (PRS) acted as a facilitator. The responses were recorded and analyzed qualitatively. RESULTS: The overall student opinion was positive. Around 25% (3 respondents) of respondents were confused about whether P-drugs were for a disease or a patient. Group consensus was commonly used to give numerical values for the different criteria. The large number of brands created problems in calculating cost. The students wanted more time for the exercise in the examination. Formative assessment during the learning sessions may be considered. The group members usually got along well. Absenteeism was a problem and not all members put in their full effort. The physical working environment should be improved. CONCLUSIONS: Based on what the students say, the sessions on P-drugs should be continued and strengthened. Modifications in the sessions are required. Sessions during the clinical years and internship training can be considered

    Current strategies for quantification of estrogens in clinical research

    Get PDF
    Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC–MS, GC–MS/MS, LC–MS and LC–MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5–5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment

    Dual A 1 /A 2B Receptor Blockade Improves Cardiac and Renal Outcomes in a Rat Model of Heart Failure with Preserved Ejection Fraction

    Get PDF
    ABSTRACT Heart failure with preserved ejection fraction (HFpEF) is prevalent and often accompanied by metabolic syndrome. Current treatment options are limited. Here, we test the hypothesis that combined A 1 /A 2B adenosine receptor blockade is beneficial in obese ZSF 1 rats, an animal model of HFpEF with metabolic syndrome. The combined A 1 /A 2B receptor antagonist 3-[4-(2,6-dioxo-1,3-dipropyl-7H-purin-8-yl)-1-bicyclo[2.2.2]octanyl]propanoic acid (BG9928) was administered orally (10 mg/kg/day) to obese ZSF 1 rats (n 5 10) for 24 weeks (from 20 to 44 weeks of age). Untreated ZSF 1 rats (n 5 9) served as controls. After 24 weeks of administration, BG9928 significantly lowered plasma triglycerides (in mg/dl: control group, 4351 6 550; BG9928 group, 2900 6 551) without adversely affecting plasma cholesterol or activating renin release. BG9928 significantly decreased 24-hour urinary glucose excretion (in mg/kg/day: control group, 823 6 179; BG9928 group, 196 6 80) and improved oral glucose tolerance, polydipsia, and polyuria. BG9928 significantly augmented left ventricular diastolic function in association with a reduction in cardiac vasculitis and cardiac necrosis. BG9928 significantly reduced 24-hour urinary protein excretion (in mg/kg/ day: control group, 1702 6 263; BG9928 group, 1076 6 238), and this was associated with a reduction in focal segmental glomerulosclerosis, tubular atrophy, tubular dilation, and deposition of proteinaceous material in the tubules. These findings show that, in a model of HFpEF with metabolic syndrome, A 1/ A 2B receptor inhibition improves hyperlipidemia, exerts antidiabetic actions, reduces HFpEF, improves cardiac histopathology, and affords renal protection. We conclude that chronic administration of combined A 1/ A 2B receptor antagonists could be beneficial in patients with HFpEF, in particular those with comorbidities such as obesity, diabetes, and dyslipidemias
    • 

    corecore