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Long-term caffeine consumption exacerbates renal failure in
obese, diabetic, ZSF1 (fa-facp) rats
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Long-term caffeine consumption exacerbates renal failure in Caffeine is the most widely used drug in the world,
obese, diabetic, ZSF1 (fa-facp) rats. and any reported benefits or risks of caffeine consump-

Background. Our preliminary studies indicate that chronic tion have received considerable attention [1, 2]. Any ad-caffeine consumption has adverse renal effects in nephropathy
verse health consequences associated with caffeine in-associated with high blood pressure and insulin resistance. The
gestion are of importance in view of the compound’spurpose of this study was to investigate the effects of early

(beginning at 8 weeks of age) and long-term (30 weeks) caffeine widespread use. However, the effects of caffeine con-
treatment (0.1% solution) on renal function and structure in sumption on renal function have received little attention.
obese, diabetic ZSF1 rats. This is surprising, particularly in view of the fact thatMethods. Metabolic and renal function measurements were

caffeine is present in most analgesic combination drugs inperformed at six-week intervals and in a subset of animals
(N � 6 per group) heart rate (HR) and mean arterial blood which long-term use may lead to analgesic nephropathy.
pressure (MABP) were monitored by a radiotelemetric tech- In Western societies, obesity is frequently associated
nique. At the end of the study acute, measurements of renal with the metabolic syndrome (that is, insulin resistance,
hemodynamics and excretory function were conducted in anes-

hyperlipidemia and hypertension), and this triad carriesthetized animals.
a high risk for renal disease with at least 70% of end-Results. Caffeine produced a very mild increase (4 to 5%)

of MABP and HR, but greatly augmented proteinuria (P � stage renal failure being attributed to hypertension or
0.001), reduced creatinine clearance (P � 0.05) and had a diabetes [3–6]. Nevertheless, no information is available
mixed effect on metabolic status in obese ZSF1 rats. Caffeine regarding the metabolic and renal effects of chronic caf-significantly reduced body weight, glycosuria, fasting glucose

feine consumption in the setting of obesity and the meta-and insulin levels and improved glucose tolerance, had no effect
bolic syndrome.on elevated plasma triglycerides levels and significantly in-

creased plasma cholesterol level (P � 0.001). Acute measure- Although there have been no clinical or epidemiologi-
ments of renal function revealed increased renal vascular resis- cal studies evaluating the impact of caffeine in chronic
tance (95.1 � 11 vs. 50.7 � 2.4 mm Hg/mL/min/g kidney, P �

renal failure, limited experimental [7–9] and clinical data0.01) and decreased inulin clearance (0.37 � 0.11 vs. 0.97 �
[10, 11] suggest that adenosine may have beneficial ef-0.13 mL/min/g kidney, P � 0.002) in caffeine-treated versus

control animals, respectively. Caffeine potentiated the develop- fects in both experimental and human chronic renal
ment of more severe tubulointerstitial changes (P � 0.05) and failure, including diabetic nephropathy. Caffeine is a non-
increased focal glomerulosclerosis (14.7 � 1.7 vs. 6.5 � 0.9%, selective adenosine receptor antagonist and at physiologi-caffeine vs. control, P � 0.002).

cal concentrations (that is, 2 to 10 �g/mL, plasma levelsConclusion. The present study provides the first evidence
seen in humans after moderate to heavy intake of coffee)that caffeine (despite improving insulin sensitivity) exacerbates

renal failure in obese, diabetic ZSF1 rats. Further mechanistic most, if not all, of caffeine’s effects are mediated via block-
studies of adverse renal effects of caffeine in chronic renal ade of adenosine A1 and A2A receptors [12–14]. Since caf-
failure associated with metabolic syndrome are warranted.

feine is an adenosine receptor antagonist, it might be
expected that caffeine would oppose the beneficial ef-
fects of adenosine in the nephropathic kidney. This rea-
soning prompted us to perform studies of caffeine con-
sumption in several experimental models of nephropathyKey words: metabolic syndrome, proteinuria, hypercholesterolemia,

blood pressure, insulin resistance, adenosine receptor antagonist. [15–17].
Our preliminary studies in lean animals indicated thatReceived for publication February 1, 2001

chronic caffeine consumption accelerates the develop-and in revised form September 24, 2001
Accepted for publication November 19, 2001 ment of nephropathy in the setting of high blood pressure

and insulin resistance [16]. Furthermore, very recently 2002 by the International Society of Nephrology
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we have noticed that caffeine consumption for 8 weeks and water intake were measured. Rats were removed
from the metabolic cages and weighed, and blood sam-was associated with an accelerated decline in renal func-

tion in ZSF1 rats [17], an animal model that in addition ples were drawn from tail vein and used for determina-
tion of plasma sodium potassium and creatinine concen-to being obese is diabetic, hyperlipidemic, and hyperten-

sive, and develops nephropathy [18]. However, caffeine trations. Plasma and urine samples were analyzed for
sodium and potassium concentrations using a flame pho-did not potentiate renal histopathological changes. The

absence of histopathological changes may be due either tometer (Model IL-943; Instrumentations Laboratory
Inc., Lexington, MA, USA) and a creatinine analyzerto the fact that adult, obese ZSF1 rats at baseline have

significant renal histopathology [17], or that the treat- (Creatinine Analyzer 2; Beckman Instruments, Inc., Ful-
lerton, CA, USA) was used to measure plasma and urinement duration for caffeine must be earlier and/or longer

to produce significant renal structural changes. Accord- creatinine. Total protein concentration was measured in
the urine samples by a spectrophotometric assay usingingly, the purpose of this study was to investigate the

effects of early, long-term caffeine consumption on meta- bicinchoninic acid reagent (Pierce, Rockford, IL, USA)
and a modification of the Lowry et al’s method [22]. Urinebolic status and renal function and structure, in obese

ZSF1 rats. albumin concentration was measured by an enzyme-
linked immunosorbent assay (ELISA) highly specific forIn the present study, physiologically relevant doses of

caffeine that produce plasma caffeine concentrations of rat albumin (Nephrat; Exocell Inc., Philadelphia, PA,
USA), and urine glucose concentrations were measured5 to 10 �g/mL (similar to those seen in humans after

modest to heavy caffeine consumption [7–9]) were uti- by a spectrophotometric assay using the Infinity� Glucose
Reagent (Sigma Diagnostics, St. Louis, MO, USA).lized to test the hypothesis that chronic caffeine con-

sumption adversely affects renal function in an experi- After the baseline metabolism studies (week 0) were
completed, animals were randomly assigned to drink tapmental model of nephropathy associated with obesity,

hypertension and the metabolic syndrome. water or a 0.1% caffeine solution. The selected dose of
caffeine (0.1% in drinking water) previously has been
shown to significantly attenuate depressor responses to

METHODS
adenosine and to provide plasma caffeine concentrations

Animals of approximately 10 �g/mL [23], which was equivalent
to the plasma concentrations seen in humans after aA total of 24 young (8 weeks of age, body weight

285 � 5 g), obese, male ZSF1 rats (Genetic Models Inc., modest intake of coffee (1 to 3 cups).
Indianapolis, IN, USA) were used in this study. The

Metabolic status measurementsobese ZSF1 rat model was developed by crossing lean
female Zucker Diabetic Fatty rats (ZDF [19, 20]) with Blood samples for measurement of glucose, insulin

and lipids were taken after 8, 17 and 26 weeks of treat-lean male Spontaneously Hypertensive Heart Failure
rats (SHHF/Mcc-facp [21]). We recently evaluated renal ment. After overnight fasting, between 8:00 and 10:00 am,

animals were anesthetized with halothane. One milliliterfunction in this model. In addition to being obese, these
animals are hypertensive, hyperlipidemic, diabetic and of blood was drawn from the tail vein, and plasma was

frozen at �70�C.develop marked renal dysfunction [18]. Also, we deter-
mined that obese ZSF1 rats do not develop some of the Plasma samples were analyzed in duplicates for triglyc-

erides and cholesterol levels (Sigma Diagnostics). Insulincomplications common for the parental strains (that is,
hydronephrosis in ZDF and overt congestive heart fail- levels were measured in duplicate by a double antibody

radioimmunoassay specific for rat insulin (Incstar Corp.,ure in SHHF rats [20, 21]) that may compromise studies
of renal function and structure. Rats were housed in Stillwater, MN, USA). A drop of blood was used to mea-

sure blood glucose levels with the Precision Q.I.D. Bloodthe University of Pittsburgh Medical Center animal care
facility (temperature, 22�C; light cycle, 12 hours; relative Glucose Test Strips kit (Medisense, Inc., Bedford, MA,

USA). After 26 weeks of treatment and overnight fast-humidity 55%). Animals were fed Pro Lab RMH 3000
rodent diet (PMI Nutrition Inc., St. Louis, MO, USA) ing, an oral glucose tolerance test was conducted. Blood

samples for measurements of fasted glucose were taken,and were given water ad libitum. Institutional guidelines
for animal welfare were followed, and experimental pro- and animals were given glucose (2 g/kg/4 mL) by oral ga-

vage. Blood withdraws were repeated after 30, 60 andtocols were approved by the Institutional Animal Care
and Use Committee. 120 minutes.

Blood pressure measurements in conscious ratsMetabolism cage studies

Before, and 12, 18 and 24 weeks into the treatments, Ten weeks into the treatment, radiotelemetry devices
(Model TA11PA-C40; Data Sciences International, St.rats were placed in metabolic cages, and after a 24-hour

acclimatization period, 24-hour urine volume and food Paul, MN) were attached to a subset of animals (N � 6
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per group) to permit monitoring of blood pressure and cally, and urine samples were analyzed for sodium and
potassium. Plasma and urine 14C-inulin radioactivity washeart rate in conscious rats. The radiotelemetry device

was inserted with the animal under halothane anesthesia measured (Liquid scintillation analyzer, Model 2500TR;
Packard Instrument Company, Downers Grove, IL, USA),as described previously [24, 25]. Animals received a post-

operative IM injection of penicillin G procaine (5000 and renal clearance of 14C-inulin was calculated as an
estimate of glomerular filtration rate. Excretion rates ofunits) and heparin (50 units.) Data acquisition was per-

formed using the Dataquest Lab Pro software package sodium and potassium and renal vascular resistance (RVR)
were calculated. Next, a bolus dose of captopril (100 mg/(Data Science International) with sampling parameters

adjusted to 10-second scan periods at 10-minute inter- kg/2 min) was administered, and 45 minutes later another
30-minute clearance period was conducted. Changes invals. Blood pressure and heart rate readings during the

first week after the surgery were not included in the final renal hemodynamic and excretory function parameters
after ACE inhibition were calculated in absolute valuesanalysis of data.
and as percent change from the baseline period. Animals

Acute measurements of renal function were euthanatized by anesthetic overdose. Right kidneys
were removed and processed for histopathological anal-At 38 weeks of age, after the 30-week treatment period,

each rat was anesthetized with pentobarbital (45 mg/kg ysis.
IP), and a short section of PE-240 polyethylene catheter

Renal histopathologywas inserted into the trachea to facilitate breathing. The
left carotid artery was cannulated with a PE-50 cathe- The right kidney tissue sample stored in 10% formalin

buffer was sectioned and then processed into paraffinter for blood sample collection and mean arterial blood
pressure (MABP) measurement via a digital pressure blocks for light microscopy. Two histological sections

(3 � thick) were cut and stained with hematoxylin-eosinanalyzer (Micro-Med. Inc., Louisville, KY, USA). Two
PE-50 cannulas were placed in the left jugular vein: line (H&E) and methenamine silver-trichrome (MST). Kid-
A for infusion of 14C-inulin (0.035 �Ci/20 �L saline/min) ney slices were examined by light microscopy and were
and line B for infusion of saline (50 �L/min) or caffeine. scored in a blinded fashion by one of the investigators
Intravenous infusion of caffeine (2 mg/h, 20 �L/min) (S.B.). A total of at least 150 glomeruli from each rat
was initiated in animals that were chronically receiving were studied and the percentage of glomeruli showing
caffeine to maintain plasma caffeine concentrations dur- segmental (FSGS) and global (FGGS) glomerulosclero-
ing the time course of the acute experiment. In a previous sis was determined. Other histopathological features as-
study (data not published), we observed that, in ani- sessed semiquantitatively included tubular atrophy (0 to
mals chronically treated with caffeine (0.1% in drink- 3�), interstitial inflammation (0 to 3�), interstitial fibrosis
ing water) the abstinence from caffeine for five hours (0 to 3�), tubular dilation (0 to 4�), arterial medial hyper-
during an acute experiment results in a decrease of caf- trophy (0 to 3�), and arteriolar sclerosis (0 to 3�).
feine plasma concentrations from �10.9 �g/mL to �0.17

Statistical analysis�g/mL. This observation is congruent with the reported
half-life of caffeine in rats (t1/2 � 0.8 hours) [26]. Further- All data are presented as mean � SEM. Statistical
more, in animals that were chronically consuming caf- analyses were performed using the Number Cruncher
feine (0.1%), intravenous infusion of caffeine (2 mg/h) Statistical software program (Kaysville, UT, USA). Group
during the acute experiment provided plasma caffeine comparisons for data from metabolic studies (repeated
concentrations that blocked the effects of exogenously measurements) were performed using a one (1F) or two
administered adenosine [27]. Next, a midline abdominal (2F) hierarchical analysis of variance (ANOVA) as ap-
incision was made and the left kidney was exposed. A propriate, followed by a Sher’s LSD test for post-hoc
PE-10 catheter was inserted into the left ureter to facili- comparisons. Comparison of data from acute experi-
tate collection of urine, and a flow probe (Model 1RB; ments (single point data) was performed by the Student
Transonic Systems, Inc., Ithaca, NY, USA) was placed t test, and data from histopathological analysis were com-
on the left renal artery for determination of renal blood pared by non-parametric Mann-Whitney t test. The prob-
flow (RBF). ability value of P � 0.05 was considered statistically

A one-hour stabilization period was permitted before significant.
two 30-minute clearance periods [that is, baseline and
after angiotensin-converting enzyme (ACE) inhibition]

RESULTSwere conducted. MABP and RBF were recorded at
The caffeine and control groups did not differ with5-minute intervals, and averaged during a 30-minute

regard to baseline (week 0) measurements of bodyurine collection. A mid-point blood sample (300 �L) to
weight, food and water intake, urine output and urinarymeasure radioactivity, sodium and potassium was col-

lected. Urine volume (UV) was determined gravimetri- protein excretion or creatinine clearance (Table 1).
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Table 1. Metabolic effects of chronic caffeine consumption in obese (fa/facp), diabetic ZSF1 rats

Weeks of treatment
2F-ANOVA

Parameter 0 week 6 weeks 12 weeks 18 weeks 24 weeks P

Body weight g
Control 284�8 517�8 588�7 657�10 704�15 �0.001
Caffeine 290�9 469�6a 517 �6a 580 �9a 621 �14a

Food intake g/kg/day
Control 126�13 82�4 61�1 55�3 61�1 �0.001
Caffeine 109�9 61�3a 50�2a 47�2a 49�3a

Fluid intake mL/kg/day
Control 181�14 205�15 117�7 133�15 111�8 �0.001
Caffeine 196�15 124�15a 80�6a 89�6a 86�5a

Urine volume mL/kg/day
Control 103�13 194�10 91�8 95�9 86�5 �0.001
Caffeine 106�14a 117�11a 61�7a 76�5a 63�5a

Urine glucose g/day
Control ND 7.3�0.4 4.0�0.5 3.6�0.6 2.1�0.5 �0.003
Caffeine ND 5.2�0.7a 2.3 �0.4a 2.7 �0.5a 1.6 �0.4a

8 weeks 17 weeks 26 weeks

Plasma glucose mg/dL
Control 179�15 171�7 205�11 �0.001
Caffeine 119�15a 129 �3a 156 �8a

Plasma insulin lU/mL
Control 101.7�3.4 97.7�2.9 88.2�6.0 �0.001
Caffeine 65.0�6.1a 71.7 �3.2a 69.9 �9.4a

Plasma triglycerides mg/mL
Control 586�52 705�48 815�40 NS
Caffeine 588�27 779�39 765�58

Plasma cholesterol mg/dL
Control 207�7 189 �13 225�8 �0.005
Caffeine 259�13a 282 �34a 628 �102a

a P � 0.05 vs. Control, Fisher’s LSD test

The effects of caffeine consumption on heart rate and in urinary protein excretion (UPE) as compared with
baseline values, and proteinuria continued to increaseblood pressure in conscious rats are presented in Fig-

ure 1. Caffeine consumption for 30 weeks significantly with aging (Fig. 3A). Caffeine consumption for only six
weeks doubled the UPE as compared with control ani-increased the heart rate and near the end of the study

(weeks 20 to 29) produced a mild, but persistent and mals, and this effect persisted until the end of the study.
Measurement of urine albumin also revealed doubledsignificant increase in blood pressure (4 to 6 mm Hg;

P � 0.05; Fig. 1). albumin excretion in caffeine treated animals as early as
six weeks into the treatment (Fig. 4). Creatinine excre-The metabolic effects of chronic caffeine consumption

are presented in Table 1. Caffeine consumption reduced tion was lower in animals that were consuming caffeine
(treatment effect, P � 0.001; Fig. 5A), and after 18 and 24food intake (treatment effect P � 0.001) and attenuated

the time-dependent increase in body weight (P � 0.001). weeks of treatment the caffeine group had a significantly
reduced creatinine clearance as compared with controlAt the end of the study, the control group and caffeine

group weighted 740 � 11 and 650 � 20 g, respectively. animals (Fig. 5B).
In animals consuming caffeine for 30 weeks, acute mea-The reduced weight gain was accompanied by signifi-

cantly lower fasting glucose and insulin levels (P � surements of renal hemodynamics and excretory func-
tion revealed reduce renal blood flow (RBF), UV, and0.001), significantly reduced glycosuria (P � 0.003), and

an improved glucose tolerance test conducted after 26 glomerular filtration rate (GFR; that is, inulin and creati-
nine clearance) and increased renal vascular resistanceweeks of treatment (Fig. 2). The improved glucose ho-

meostasis also was accompanied by reduced polydipsia (RVR), plasma creatinine levels and urinary protein ex-
cretion (Table 2). Captopril produced a greater reduc-and polyuria (Table 1). Caffeine had no effect on triglyc-

erides levels, yet significantly increased total cholesterol tion in RVR and greater increase in RBF and UV in
caffeine-treated as compared with control animals (Fig.levels (P � 0.005). A striking effect of caffeine consump-

tion on urinary protein excretion was detected. In 14- 6), suggesting an increased activity of the renin-angioten-
sin system in animals that consumed caffeine.week-old control animals, as obesity and the metabolic

syndrome fully developed, there was a fivefold increase Analysis of renal histology revealed a significantly
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Fig. 1. Blood pressure (A) and heart rate (B)
in controls (�; N � 6) and obese, diabetic
ZSF1 rats (�; N � 6) consuming caffeine for
30 weeks (*P � 0.01 by 2F ANOVA).

damage in obese ZSF1 rats, a model that in the presence
of obesity and the metabolic syndrome develops renal
failure. The observed adverse renal effects of caffeine
occur even in the face of improved glucose homeostasis,
which would be expected to ameliorate renal function
in obese, diabetic ZSF1 rats. This latter finding makes
the results of this study even more significant and raises
the question about possible mechanism(s) by which caf-
feine exacerbates renal failure in obese ZSF1 rats.

Although in the present study caffeine consumption
was associated with an increase in blood pressure it is
very unlikely that the exacerbation of renal failure by
caffeine was due to this risk factor for renal disease
[4]. Caffeine consumption increased the heart rate and
produced mild, albeit significant, increases in blood pres-

Fig. 2. Oral glucose tolerance test in controls (�; N � 11) and obese,
sure, suggesting that no tolerance to the hemodynamicdiabetic ZSF1 rats after 26 weeks of caffeine consumption (�; N �

12). * 2F ANOVA, (A) treatment, P � 0.12, (B) time, P � 0.001, A � effects of caffeine developed during chronic caffeine con-
B interaction, P � 0.002; * P � 0.05 vs. control, Fisher’s LSD test. sumption. This is consistent with recent findings in hu-

mans. Although it has been long held that tolerance
develops quickly to the hemodynamic effects of caffeine,
recent studies in humans suggest that caffeine inducesgreater incidence of glomerulosclerosis (6.5 � 0.9 vs.
persistent, albeit moderate, increases in blood pressure14.7 � 1.7%, control vs. caffeine) and more severe tubu-
in regular coffee drinkers [28–30], and in individualslointerstitial changes in the caffeine group compared
at high risk for hypertension, this effect may becomewith control obese ZSF1 rats (Table 3, and Figs. 7 and 8).
clinically significant [31, 32]. However, it should be em-
phasized that increases in blood pressure were modest

DISCUSSION and only occurred toward the end of the study (after
20 weeks of consumption), whereas marked effects ofThe main findings of this study is that caffeine con-
caffeine on proteinuria were detected after only sixsumption for 30 weeks exacerbated renal failure and

induced more severe tubulointerstitial and glomerular weeks of caffeine consumption. This suggests that the
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Fig. 3. Urinary protein excretion in controls (�; N � 11) and obese,
diabetic ZSF1 rats before and after 6, 12, 18 and 24 weeks of treatment
with caffeine (�; N � 12). * 2F ANOVA, (A) treatment, P � 0.001,
(B) time, P � 0.001, A � B interaction, P � 0.001; a P � 0.05 vs.
baseline; b P � 0.05 vs. control.

Fig. 5. Urinary creatinine excretion (A) and creatinine clearance (B)
in controls (�; N � 11) and in obese, diabetic ZSF1 rats before and
after 6, 12, 18 and 24 weeks of treatment with caffeine (�; N � 12).
2F ANOVA, (A) treatment, P � 0.001, (B) time, P � 0.001, A � B
interaction; P � 0.03; a P � 0.05 vs. control.

elevated blood pressure did not cause the initial renal
injury. In this regard, caffeine has been shown to aug-
ment blood pressure and exacerbate renal damage in
experimental renovascular hypertension and nephropa-
thy (2-kidney, 1 clip rats) [23, 33–36]. However, in our
previous studies conducted in normotensive rats with
puromycin aminonucleoside-induced nephropathy [15],
spontaneously hypertensive heart failure rats [16], adult
obese ZSF1 rats [17], and rats with accelerated hyperten-
sion and nephropathy induced by chronic NOS inhibi-
tion, caffeine did not alter blood pressure, yet it adversely
affected renal function (abstract; Tofovic et al, J Am Soc
Nephrol 11:631, 2000).

Caffeine significantly increased plasma cholesterol lev-
Fig. 4. Urinary albumin excretion in controls (�) and obese, diabetic els in obese ZSF1 rats. The available limited data regard-
ZSF1 rats (�) after 6, 12, 18 and 24 weeks of treatment with caffeine.

ing caffeine’s effects on lipids in rats are contradictory,* 2F ANOVA, (A) treatment, P � 0.001, (B) time, P � 0.001, A � B
interaction, P � 0.001; a P � 0.05 vs. control. with studies reporting modest cholesterol increases within
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Table 3. Renal histopathology in obese (fa/facp)Table 2. Renal hemodynamic and excretory function
in obese (fa/facp) ZSF1 rats after 30 weeks of caffeine ZSF1 rats treated with caffeine for 30 weeks

(0.1% in drinking water) consumption
Control Caffeine
N�12 N�12 PParameters Control Caffeine

Body weight g 740�11 650�20a Total kidney weight g 4.08 �0.15 4.44�0.21 NS
Kidney/body weight ratio mg/g 5.45 �0.22 6.98�0.51 �0.05Left kidney g 2.10�0.13 2.25�0.07

Mean blood pressure FSGS�FGGS % 6.5 �0.9 14.7�1.7 �0.002
Tubular atrophy 0–3� 0.3 �0.1 0.8�0.2 �0.02mm Hg 153.0�6.1 154.1�10.1

Renal blood flow Tubular dilation 0–4� 1.8 �0.1 2.5�0.2 �0.015
Interstitial inflammation 0–3� 1.2 �0.2 2.0�0.1 �0.015mL/min/g kidney 3.06�0.17 1.84�0.21a

Hematocrit % 43�1 40�1 Interstitial fibrosis 0–3� 0.1 �0.1 0.3�0.1 NS
Medial hypertrophy 0–3� 1.6 �0.1 1.7�0.2 NSRenal plasma flow

mL/min/g kidney 1.75�0.1 1.12�0.14a Arteriolar sclerosis 0–3� 1.1 �0.2 0.9�0.1 NS
Renal vascular resistance

mm Hg/mL/min/g kidney 50.8�2.5 95.1�10.9a

Urine volume
mL/min/g kidney 33.5�3.7 20.4�3.9a

Glomerular filtration rate the physiological range [37], transient but not sustained
mL/min/g kidney 0.97�0.13 0.37�0.06a

increases in plasma cholesterol in rats on a high choles-Plasma creatinine
mg/dL 0.56�0.11 1.33�0.33a terol diet [38], or no effects in rats consuming boiled

Creatinine clearance coffee [39]. The striking effects of caffeine on proteinuria
mL/min/g kidney 0.78�0.11 0.23�0.08a

detected after six weeks of treatment were initially ac-Sodium excretion
lEq/min/g kidney 0.66�0.12 0.43�0.15 companied by very modest increases in plasma cholesterol

Potassium excretion levels (week 8, 207 � 7 and 259 � 13 mg/dL, control and
lEq/min/g kidney 1.11�0.10 0.79�0.16

caffeine groups, respectively; Table 1). It is very unlikelyCreatinine excretion
lg/min/g kidney 3.55�0.36 1.78�0.30a that this modest increase in plasma cholesterol (that is,

Urinary protein excretion a risk factor for renal disease [40]) caused initial renal
lg/min/g kidney 33.5�3.6 71.8�18.9a

damage and induced proteinuria. More likely, similar to
Data are mean � SE. elevated lipids in nephrotic syndrome [41], increaseda P � 0.05, Caffeine vs. Control

cholesterol levels were due to augmented proteinuria.
Chronic caffeine consumption reduced body weight,

food consumption, glycosuria, fasting glucose and insulin
levels, and improved the oral glucose tolerance in obese
ZSF1 rats. This is not surprising in view of the significant
and tissue specific effects of adenosine on insulin sensitiv-
ity. Adenosine via activation of A1 receptors decreases
the sensitivity to insulin in skeletal muscle, a tissue that
is considered the most important site for glucose disposal
in response to insulin. Furthermore, adenosine A1 recep-
tor antagonists have been shown to increase sensitivity
to insulin in skeletal muscle from lean [42] and obese
rats, and to improve glucose tolerance in obese Zucker
rats in vivo [43, 44]. Importantly, caffeine significantly
reduced body weight. This is in congruence with our pre-
vious study conducted in adult ZSF1 rats where 8 weeks
of caffeine consumption reduced food intake and body
weight [17]. It appears that appetite suppression and
weight reduction in response to caffeine occurs in obese
but not lean animals. In this regard caffeine combined
with ephedrine was shown to reduce food intake and
to reverse or prevent obesity in genetically obese fa/fa
Zucker rats [45, 46], and to reduce food intake and body
weight in obese but not in lean primates [47]. Similarly,
in our previous studies conducted in lean rats with ne-
phropathy associated with genetic hypertension and in-

Fig. 6. Changes in renal hemodynamic and excretory function parame- sulin resistance or in lean rats with puromycin-aminonu-
ters after administration of captopril. Symbols are: (�) control; ( )

cleoside induced nephropathy, no effects of 24 weeks ofcaffeine. Baseline period values are presented in Table 2; * P � 0.05,
** P � 0.005, *** P � 0.001. caffeine consumption were detected on food intake or
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Fig. 7. Representative light micrographs show-
ing histological alterations in a kidney from con-
trol obese, diabetic ZSF1 rat at 38 weeks of age.
(A) �22; (B) �44; (C) �110; (D) �440; all methe-
namine silver-trichrome stained.

body weight [15, 16]. The reduced food consumption and consumption actually improved glucose control. Alto-
gether, these observations suggest that changes in creati-body weight and improved glucose homeostasis by caf-

feine would be expected to ameliorate renal function in nine clearance were more likely due to hemodynamic
changes and the prolonged massive proteinuria, ratherobese diabetic ZSF1 rats. Nevertheless, caffeine very early

(that is, after 6 weeks of caffeine consumption) doubled than to diabetic glomerulosclerosis. In this regard, more
severe interstitial changes (that is, inflammation) andurinary protein excretion.

The early, striking increase in proteinuria and late increased incidence of glomerulosclerosis in caffeine-
treated animals are consistent with an early increase inchanges in glomerular filtration in the caffeine group

were accompanied by only a modest increase in the inci- protein excretion and late changes in creatinine clear-
ance. It is believed that in overt proteinuria the filtereddence of glomerulosclerosis. Furthermore, obese ZSF1

rats expressed only mild hyperglycemia, and caffeine proteins that leak into the interstitium induce interstitial
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Fig. 8. Representative light micrographs showing histological alterations in a kidney from obese, diabetic ZSF1 rat after 30 weeks of caffeine
consumption. (A) �22; (B) �110; (C ) �330; all methenamine silver-trichrome stained.

inflammation and a subsequent increase in extracellular mediated anti-inflammatory effects of methotrexate in
vivo in rats [56]. Furthermore, at pharmacologically rele-matrix and scarring [48]. It is possible that the increase

in glomerulosclerosis observed in the present study was vant concentrations, caffeine augments TNF	-primed
activation of PMN cells [57]. It is possible that caffeine,due to prolonged and marked proteinuria and increased

interstitial inflammation. It seems that cellular infiltration by interacting with A2A receptors, accelerates the devel-
opment of interstitial inflammation and augments pro-and interstitial inflammation directly contribute to the de-

cline in renal function (that is, creatinine clearance) and teinuria and the late changes in renal function and struc-
ture. However, since the present study did not addressdetermine the magnitude of proteinuria and progression

of late histological changes in experimental nephropathy. the temporal relationship between interstitial changes
and proteinuria, no definitive evidence as to whether theIn this regard, irradiation or pharmacological inhibition

of interstitial inflammation improves glomerular filtra- increased interstitial inflammation is the cause or the
consequence of increased proteinuria is provided. Ourtion, prevents or attenuates proteinuria and diminishes

the progression of histological changes in experimental study results might seem somewhat paradoxical since
theophylline, a non-selective adenosine receptor antago-nephropathy [49–51]. It should be emphasized that obese

Zucker rats develop interstitial inflammation very early nist similar to caffeine, has been used to improve renal
function in various models of acute renal failure. How-(5 weeks of age), which is closely associated with protein-

uria but is distinctly separate from the glomerulosclerosis ever, there is compelling evidence that, in contrast to
acute renal failure, in chronic renal failure adenosinethat occurs at an older age [52, 53]. It is possible that caf-

feine, via inhibition of A2A adenosine receptors, accel- may confer renoprotection, whereas adenosine antago-
nists may adversely affect renal function. In additionerated the development of interstitial inflammation. For

example, activation of A2A receptors was shown to in- to its anti-inflammatory effects (supra vide) adenosine
interacts with several other systems that play an impor-hibit polymorphonuclear (PMN) cells infiltration and pro-

tect kidneys from ischemic reperfusion injury in rats tant role in progression of renal failure, and inhibition
of that interaction (that is, by caffeine) may have ill(abstract; Okusa et al, J Am Soc Nephrol 9:583A, 1998)

[54]. Also, adenosine via A2A receptors inhibits leuko- effects on renal function.
First, endogenous adenosine via activation of A1 recep-cyte-induced vasoconstriction by preventing the adhe-

sion of neutrophils to endothelium and superoxide gen- tors restrains basal renin release and the renin release
response to various stimuli [58], whereas caffeine aug-eration [55]. In contrast, both caffeine and theophylline

(non-selective adenosine receptor antagonist similar to ments basal renin release and renin release responses to
various stimuli in experimental settings and in humanscaffeine) were shown to reverse adenosine receptor-
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[59–63]. In the present study, inhibition of renin-angio- sensitive to the vascular effects of adenosine [71]. There-
fore, the inhibition of adenosine receptors by caffeinetensin system (RAS) with the ACE inhibitor captopril

resulted in greater changes in renal hemodynamics in may be expected to induce more severe adverse effects
in diabetic kidneys.caffeine-treated rats, suggesting increased activity of the

renal RAS in animals that were consuming caffeine. An- The above discussion examined several non-mutually
exclusive mechanisms that may mediate the adverse re-giotensin II is known (via preferential constriction of

efferent arterioles) to increase intraglomerular capillary nal effects of caffeine. Although these effects may not
be significant in healthy kidneys, in pre-existing nephrop-pressure and to stimulate glomerular growth and fibrosis

[64], and chronic activation of RAS is well documented athy in the presence of other risk factors caffeine may
accelerate renal deterioration. In this regard, our previ-to have detrimental effects on renal function.

Second, adenosine plays an important role in modulat- ous studies demonstrated that caffeine consumption has
adverse renal effects in several models of experimentaling glomerular hemodynamics. At lower concentrations

adenosine via A1 receptors constricts the afferent arteri- nephropathy in rats [15–17], but has no adverse effect
ole, whereas at higher (micromolar) concentrations aden- on renal function and structure in normotensive lean
osine activates A2 receptors and dilates the efferent arte- rats with intact kidneys [15] and in adult spontaneously
rioles. The activation of both types of receptors results hypertensive rats that (due to protective effects of ele-
in a marked fall in intraglomerular pressure and prevents vated preglomerular vascular resistance) have normal
glomerular hyperfiltration. In contrast, the inhibition of renal function and develop nephropathy very late [23].
adenosine receptors may be expected to have the oppo- In summary, this study provides the first evidence, to
site effect. Interestingly, in micropuncture studies in rats, our knowledge, that in the face of improved insulin sen-
blockade of A1 receptors with DPCPX, a selective A1 sitivity, caffeine exacerbates renal failure in the experi-
receptor antagonist, reduces afferent arteriolar tone and mental setting of obesity and the metabolic syndrome.
increases intraglomerular pressure [65]. Also in rats, caf- Our results imply that the health consequences of chronic
feine augments angiotensin II-induced increases in fil- caffeine consumption may be importantly determined
tration fraction, suggesting that caffeine may augment by underlying pathophysiology, and that negative studies
angiotensin II-induced glomerular hypertension [27]. in normal humans do not exclude possible adverse effects

Third, several studies suggest that adenosine plays an in complex disease states. These data provide a strong
important role in signal transmission in the tubuloglo- rationale for examining the metabolic and renal effects
merular feedback (TGF) mechanism. Interestingly, the of caffeine consumption in individuals with chronic renal
homeostatic efficiency of TGF is reduced in diabetic ne- failure and the metabolic syndrome.
phropathy, and this renders the diabetic glomeruli more
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