54 research outputs found

    Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stink bugs (Hemiptera: Pentatomidae) comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding.</p> <p>Results</p> <p>Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls.</p> <p>Conclusions</p> <p>The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.</p

    The Presence of Flour Affects the Efficacy of Aerosolized Insecticides used to Treat the Red Flour Beetle, Tribolium castaneum

    Get PDF
    Experiments were conducted in tightly sealed pilot scale warehouses to assess the efficacy of common aerosolized insecticides on all life stages of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) when exposed in dishes containing 0 to 2 g of wheat flour either under pallets or out in the open. Petri dishes containing 0, 0.1, 1, or 2 g of flour were prepared with 25 eggs, 3rd instars, pupae, or adults and then immediately treated with aerosolized solvent, Pyrethrins, or esfenvalerate. Twenty-four h after insecticide exposure, the dishes were brought to the laboratory and placed in a growth chamber and held for a 3 day moribund (knockdown) assessment and a 21 day mortality assessment. Mortality in untreated controls was generally less than 10%, with the exception of the 21 day counts of adults and eggs. Solvent-treated replications followed similar trends, except that additional mortality was observed in exposed larvae and pupae. In the insecticide-treated dishes, mortality of T. castaneum provisioned with flour generally showed a linear decrease with increasing flour deposits. Regardless of life stage, mortality did not exceed 60% when individuals were exposed in petri dishes containing 2 g of flour. Exposure location also made a significant difference in observed mortality. While mortality never exceeded 75% in dishes positioned under pallets, there was never less than 80% mortality in dishes exposed in the open. Although there was a perceptible increase in mortality with esfenvalerate compared to Pyrethrins, these differences were considerably less than the variation observed among flour deposits. The study suggests that sanitation and preparation prior to aerosol insecticide treatments were more important than choice of a particular insecticide

    Rapid Assessment of Insect Fragments in Flour Milled from Wheat Infested with Known Densities of Immature and Adult \u3ci\u3eSitophilus oryzae\u3c/i\u3e (Coleoptera: Curculionidae)

    Get PDF
    Milling wheat, Triticum aestivum L., infested with low densities of internal feeding insects can result in flour containing insect fragments. The Food and Drug Administration (FDA) enforces a standard or defect action level stating that a maximum of 75 insect fragments per 50 g of flour is allowed. However, the relationship between level of infestation and number of resulting fragments is not well documented, and a more rapid method for enumerating insect fragments is needed. We characterized the number of insect fragments produced from milling small lots of wheat spiked with known densities and life stages of Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Insect fragments were enumerated with near-infrared spectroscopy (NIRS), a quick nondestructive procedure, and with the industry standard flotation method. Results showed that an individual small larva, large larva, pupa, or adult produced 0.4, 0.7, 1.5, and 27.0 fragments, respectively. NIRS-predicted counts of ≤51 (from small larvae), ≤53 (from large larvae), ≤43 (from pupae), or 0 (from adults) indicated that there weresample, because the upper bound of associated 95% inverse prediction confidence intervals was less than the standard; NIRS-predicted counts of ≥98, ≥117, ≥108, or ≥225 fragments (same life stages as above) signaled that these flour samples contained \u3e75 actual fragments. These data suggest that NIRS could be adopted for rapid assessment of insect fragments resulting from relatively low levels of infestation with immature life states, but that it was not accurate enough for enumerating insect fragments, relevant to FDA standards, resulting from adults

    Investigating the effects of planting date and Aphis gossypii management on reducing the final incidence of cotton leafroll dwarf virus

    Get PDF
    This is the first study to research management strategies for cotton leafroll dwarf virus (CLRDV) in the southeastern U.S. The efficacy of aphid vector management to reduce final CLRDV incidence was investigated concurrent with efforts to monitor aphid population dynamics and timing of CLRDV spread. Adjusting the planting date and insecticide applications did not reduce the final incidence of CLRDV, which was confirmed in 60–100% of plants per plot using RT-PCR. Aphid population density was reduced, but not eliminated with foliar insecticide applications. Aphis gossypii was the only species observed on cotton and was the dominant species collected in pan traps. Three distinct periods of virus spread were detected with sentinel plants including early, mid-and late-season. Most virus spread occurred during large aphid dispersal events

    Genomic approaches to understanding population divergence and speciation in birds

    Get PDF
    © 2016 American Ornithologists\u27 Union. The widespread application of high-throughput sequencing in studying evolutionary processes and patterns of diversification has led to many important discoveries. However, the barriers to utilizing these technologies and interpreting the resulting data can be daunting for first-time users. We provide an overview and a brief primer of relevant methods (e.g., whole-genome sequencing, reduced-representation sequencing, sequence-capture methods, and RNA sequencing), as well as important steps in the analysis pipelines (e.g., loci clustering, variant calling, whole-genome and transcriptome assembly). We also review a number of applications in which researchers have used these technologies to address questions related to avian systems. We highlight how genomic tools are advancing research by discussing their contributions to 3 important facets of avian evolutionary history. We focus on (1) general inferences about biogeography and biogeographic history, (2) patterns of gene flow and isolation upon secondary contact and hybridization, and (3) quantifying levels of genomic divergence between closely related taxa. We find that in many cases, high-throughput sequencing data confirms previous work from traditional molecular markers, although there are examples in which genome-wide genetic markers provide a different biological interpretation. We also discuss how these new data allow researchers to address entirely novel questions, and conclude by outlining a number of intellectual and methodological challenges as the genomics era moves forward

    Incidence, risk factors and clinical epidemiology of melioidosis: a complex socio-ecological emerging infectious disease in the Alor Setar region of Kedah, Malaysia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melioidosis, a severe and fatal infectious disease caused by <it>Burkholderia pseudomallei</it>, is believed to an emerging global threat. However, data on the natural history, risk factors, and geographic epidemiology of the disease are still limited.</p> <p>Methods</p> <p>We undertook a retrospective analysis of 145 confirmed cases extracted from a hospital-based Melioidosis Registry set up from 2005 in Hospital Sultanah Bahiyah, Alor Setar, Kedah state, Malaysia, in order to provide a first description of the contemporary incidence, risk factors, and clinical epidemiology of the disease in this putatively high risk region of the country.</p> <p>Results</p> <p>The incidence of melioidosis in Alor Setar is remarkably high at 16.35 per 100,000 population per year. The mean age of patients was 50.40 years, with infection varying nonlinearly with age. Males (75.2%; <it>P </it>< 0.0001) predominated and the majority of cases were Malays (88.9%). The overall, crude mortality rate among the study patients was 33.8%. The proportions of cases and deaths were significantly greater among patients involved in farming, forestry and fishing and the unemployed (χ<sup>2 </sup>= 30.57, <it>P </it>< 0.0001). A majority of cases (62.75%) were culture positive, with mortality in these patients being 45.05%. A large proportion (83.0%) of culture positives was also bacteremic. Pneumonia accounted for 42.06% of primary diagnoses followed in importance by soft tissue abscess. In patients with pneumonia and who were culture positive, the mortality rate was as high as 65.00%. Diabetes mellitus constituted the major underlying risk factor for developing and dying from melioidosis, occurring in 57% of all diagnosed cases. The age distribution of diabetes paralleled that of melioidosis cases. There were linear associations between cases and deaths with monthly rainfall.</p> <p>Conclusions</p> <p>Melioidosis represents a complex socio-ecological public health problem in Kedah, being strongly related with age, occupation, rainfall and predisposing chronic diseases, such as diabetes mellitus. Among cases, bacteremic patients were associated with significantly high mortality despite provision of the recommended antibacterial therapy. The burden of this disease is likely to grow in this region unless better informed interventions targeted at high-risk groups and associated diseases are urgently implemented.</p

    Two Genes on A/J Chromosome 18 Are Associated with Susceptibility to Staphylococcus aureus Infection by Combined Microarray and QTL Analyses

    Get PDF
    Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N2 backcross mice (F1 [C18A]×C57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus–challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 β and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies
    corecore