386 research outputs found

    Determining the Neutrino Mass Eigenstates and the effective Majorana Mass

    Full text link
    This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP-violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix, and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure. Owing to that, there is a belief and it is considered that neutrinos may follow such a hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today's neutrino physics it is only known that the neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.Comment: 26 pages, 3 figure

    Understanding Scanning Tunneling Microscopy Contrast Mechanisms on Metal Oxides: A Case Study

    Get PDF
    Cataloged from PDF version of article.A comprehensive analysis of contrast formation mechanisms in scanning tunneling microscopy (STM) experiments on a metal oxide surface is presented with the oxygen-induced (2√2 √2)R45 missing row reconstruction of the Cu(100) surface as a model system. Density functional theory and electronic transport calculations were combined to simulate the STM imaging behavior of pure and oxygen-contaminated metal tips with structurally and chemically different apexes while systematically varying bias voltage and tip sample distance. The resulting multiparameter database of computed images was used to conduct an extensive comparison with experimental data. Excellent agreement was attained for a large number of cases, suggesting that the assumed model tips reproduce most of the commonly encountered contrast-determining effects. Specifically, we find that depending on the bias voltage polarity, copper-terminated tips allow selective imaging of two structurally distinct surface Cu sites, while oxygenterminated tips show complex contrasts with pronounced asymmetry and tip sample distance dependence. Considering the structural and chemical stability of the tips reveals that the copper-terminated apexes tend to react with surface oxygen at small tip sample distances. In contrast, oxygenterminated tips are considerably more stable, allowing exclusive surface oxygen imaging at small tip sample distances. Our results provide a conclusive understanding of fundamental STM imaging mechanisms, thereby providing guidelines for experimentalists to achieve chemically selective imaging by properly selecting imaging parameters

    Lipidomics Provides New Insight into Pathogenesis and Therapeutic Targets of the Ischemia-Reperfusion Injury

    Get PDF
    Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes

    Alkali activation of dif ferent type of ash as a production of combustion process

    Get PDF
    Presented study deals with the final struc ture and radiological properties of different fly-ash based geopolymers. Lig nite fly-ash (lignite Kolubara – Ser bia) and wood fly ash were obtained in combustion process together with commercial fly-ash. Synthesis of the geopolymers was con ducted by mixing fly-ash, sodium silicate solution, NaOH and water. The sam ples were strength ened 60 °C for 48 hours af ter stay ing at room temperature in covering mold for 24 hours. The X-ray dif frac tion, Fou rier trans form in fra red and SAM mea sure ments were conducted on the sam ples af ter 28 days of geopolymerization pro cess. The X-ray dif frac tion measurements of lignite fly-ash sam ples show anhydrite as the main constituent, while wood fly-ash samples consist of cal cite, albite and gypsum minerals. Besides determination of physicochemical properties, the aim of this study was radiological characterization of lignite fly-ash, wood fly-ash and the obtained geopolymer products. Ac tiv ity con cen tra tion of 40 K and radionuclides from the 238 U and 232 Th decay series, in ash sam ples and fly-ash based geopolymers, were determined by means of gamma-ray spectrometry, and the absorbed dose rate, D, and the annual effective dose rate, E, were calcu lated in accordance with the UNSCEAR 2000 report

    Simultaneous measurement of multiple independent atomic-scale Interactions using scanning probe microscopy: data interpretation and the effect of cross-talk

    Get PDF
    Cataloged from PDF version of article.In high-resolution scanning probe microscopy, it is becoming increasingly common to simultaneously record multiple channels representing different tip-sample interactions to collect complementary information about the sample surface. A popular choice involves simultaneous scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) measurements, which are thought to reflect the chemical and electronic properties of the sample surface. With surface-oxidized Cu(100) as an example, we investigate whether atomic-scale information on chemical interactions can be reliably extracted from frequency shift maps obtained while using the tunneling current as the feedback parameter. Ab initio calculations of interaction forces between specific tip apexes and the surface are utilized to compare experiments with theoretical expectations. The examination reveals that constant-current operation may induce a noticeable influence of topography-feedback-induced cross-talk on the frequency shift data, resulting in misleading interpretations of local chemical interactions on the surface. Consequently, the need to apply methods such as 3D-AFM is emphasized when accurate conclusions about both the local charge density near the Fermi level, as provided by the STM channel, and the site-specific strength of tip-sample interactions (NC-AFM channel) are desired. We conclude by generalizing to the case where multiple atomic-scale interactions are being probed while only one of them is kept constant

    Sexual dimorphism of medium-sized neurons with spines in human nucleus accumbens

    Get PDF
    The nucleus accumbens is a limbic nucleus, representing part of the striatum body, and together with the caudate nucleus and putamen, it lies on the septum. The aim of this study was to examine morphological sexual dimorphism in spine density and also to undertake an immunohistochemical study of expression for estrogen and progesterone receptors in the medium-sized neurons in the nucleus accumbens. The research was conducted on twenty human brains of persons of both sexes, between the age of 20-75 years. The Golgi method was applied to determine the types and subtypes of neurons, morphologies of soma, dendrites and axons, as well as the relations between the cells and glial elements. The following were quantitatively examined: the maximum diameter of the neurons, the minimal diameter of the neurons, and the total length of the dendrites. The expression of receptors for estrogen and progesterone, their distribution and intensity were defined immunohistochemically. The parameters of the bodies of neurons in the shell and core of the nucleus accumbens were studied in both men and women. No statistically significant differences were found. Examination of the spine density showed statistical significance in terms of a higher density of spines in women. Immunohistochemically, in the female brain estrogen expression is diffusely spread in a large number of neurons; it is extra nuclear, of granular appearance and high intensity. In the male brain, expression of estrogen is visible and distributed over about one half of different types of neurons; it is extra nuclear, of granular appearance, mostly of middle and low staining intensity. Expression of progesterone in the female brain was very discreet and on a very small number of neurons; it was extra nuclear and with a weak staining intensity. Expression of progesterone in the male brain was distributed on a small number of neurons. It had a granular appearance, it was extra nuclear, with a very low staining intensity. Our results show differences in the morphology as well as expression of receptors for estrogen and progesterone on medium-sized neurons with spines in the nucleus accumbens of men and women

    From Davydov solitons to decoherence-free subspaces: self-consistent propagation of coherent-product states

    Get PDF
    The self-consistent propagation of generalized D1D_{1} [coherent-product] states and of a class of gaussian density matrix generalizations is examined, at both zero and finite-temperature, for arbitrary interactions between the localized lattice (electronic or vibronic) excitations and the phonon modes. It is shown that in all legitimate cases, the evolution of D1D_{1} states reduces to the disentangled evolution of the component D2D_{2} states. The self-consistency conditions for the latter amount to conditions for decoherence-free propagation, which complement the D2D_{2} Davydov soliton equations in such a way as to lift the nonlinearity of the evolution for the on-site degrees of freedom. Although it cannot support Davydov solitons, the coherent-product ansatz does provide a wide class of exact density-matrix solutions for the joint evolution of the lattice and phonon bath in compatible systems. Included are solutions for initial states given as a product of a [largely arbitrary] lattice state and a thermal equilibrium state of the phonons. It is also shown that external pumping can produce self-consistent Frohlich-like effects. A few sample cases of coherent, albeit not solitonic, propagation are briefly discussed.Comment: revtex3, latex2e; 22 pages, no figs.; to appear in Phys.Rev.E (Nov.2001

    Anesthetic Propofol Attenuates the Isoflurane-Induced Caspase-3 Activation and Aβ Oligomerization

    Get PDF
    Accumulation and deposition of β-amyloid protein (Aβ) are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients

    Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution

    Full text link
    In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. [2006] have found analytical results.Comment: 34 pages, 7 figures; Journal of Statistical Physics 201
    corecore