79 research outputs found

    Hybrid Image Visualization Tool for 3D integration of CT coronary anatomy and quantitative myocardial perfusion PET

    Get PDF
    Purpose: Multimodal cardiac imaging by CTA and quantitative PET enables acquisition of patient-specific coronary anatomy and absolute myocardial perfusion at rest and during stress. In the clinical setting, integration of this information is performed visually or using coronary arteries distribution models. We developed a new tool for CTA and quantitative PET integrated 3D visualization, exploiting XML and DICOM clinical standards. Methods: The Hybrid Image Tool (HIT) developed in the present study included four main modules: (1) volumetric registration for spatial matching of CTA and PET datasets, (2) an interface to PET quantitative analysis software, (3) a derived DICOM generator able to build DICOM dataset from quantitative polar maps, and (4) a 3D visualization tool of integrated anatomical and quantitative flow information. The four modules incorporated in the HIT tool communicate by defined standard XML files: XML-transformation and XML MIST standards. Results: The HIT tool implements a 3D representation of CTA showing real coronary anatomy fused to PET derived quantitative myocardial blood flow distribution. The technique was validated on 16 datasets from EVINCI study population. The validation of the method confirmed the high matching between "original" and derived datasets as well as the accuracy of the registration procedure. Conclusions: Three-dimensional integration of patient-specific coronary artery anatomy provided by CTA and quantitative myocardial blood flow obtained from PET imaging can improve cardiac disease assessment. The HIT tool introduced in this paper may represent a significant advancement in the clinical use of this multimodal approach

    Cost-effectiveness analysis of stand-alone or combined non-invasive imaging tests for the diagnosis of stable coronary artery disease: results from the EVINCI study

    Get PDF
    Aim: This study aimed at evaluating the cost-effectiveness of different non-invasive imaging-guided strategies for the diagnosis of obstructive coronary artery disease (CAD) in a European population of patients from the Evaluation of Integrated Cardiac Imaging in Ischemic Heart Disease (EVINCI) study. Methods and results: Cost-effectiveness analysis was performed in 350 patients (209 males, mean age 59 ± 9 years) with symptoms of suspected stable CAD undergoing computed tomography coronary angiography (CTCA) and at least one cardiac imaging stress-test prior to invasive coronary angiography (ICA) and in whom imaging exams were analysed at dedicated core laboratories. Stand-alone stress-tests or combined non-invasive strategies, when the first exam was uncertain, were compared. The diagnostic end-point was obstructive CAD defined as > 50% stenosis at quantitative ICA in the left main or at least one major coronary vessel. Effectiveness was defined as the percentage of correct diagnosis (cd) and costs were calculated using country-specific reimbursements. Incremental cost-effectiveness ratios (ICERs) were obtained using per-patient data and considering “no-imaging” as reference. The overall prevalence of obstructive CAD was 28%. Strategies combining CTCA followed by stress ECHO, SPECT, PET, or stress CMR followed by CTCA, were all cost-effective. ICERs values indicated cost saving from − 969€/cd for CMR-CTCA to − 1490€/cd for CTCA-PET, − 3092€/cd for CTCA-SPECT and − 3776€/cd for CTCA-ECHO. Similarly when considering early revascularization as effectiveness measure. Conclusion: In patients with suspected stable CAD and low prevalence of disease, combined non-invasive strategies with CTCA and stress-imaging are cost-effective as gatekeepers to ICA and to select candidates for early revascularization

    Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy

    Get PDF
    Background Regional contractile dysfunction is a frequent finding in hypertrophic cardiomyopathy (HCM). We aimed to investigate the contribution of different tissue characteristics in HCM to regional contractile dysfunction. Methods We prospectively recruited 50 patients with HCM who underwent cardiovascular magnetic resonance (CMR) studies at 3.0 T including cine imaging, T1 mapping and late gadolinium enhancement (LGE) imaging. For each segment of the American Heart Association model segment thickness, native T1, extracellular volume (ECV), presence of LGE and regional strain (by feature tracking and tissue tagging) were assessed. The relationship of segmental function, hypertrophy and tissue characteristics were determined using a mixed effects model, with random intercept for each patient. Results Individually segment thickness, native T1, ECV and the presence of LGE all had significant associations with regional strain. The first multivariable model (segment thickness, LGE and ECV) demonstrated that all strain parameters were associated with segment thickness (P < 0.001 for all) but not ECV. LGE (Beta 2.603, P = 0.024) had a significant association with circumferential strain measured by tissue tagging. In a second multivariable model (segment thickness, LGE and native T1) all strain parameters were associated with both segment thickness (P < 0.001 for all) and native T1 (P < 0.001 for all) but not LGE. Conclusion Impairment of contractile function in HCM is predominantly associated with the degree of hypertrophy and native T1 but not markers of extracellular fibrosis (ECV or LGE). These findings suggest that impairment of contractility in HCM is mediated by mechanisms other than extracellular expansion that include cellular changes in structure and function. The cellular mechanisms leading to increased native T1 and its prognostic significance remain to be established

    Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.

    Get PDF
    Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method

    Cost-effectiveness analysis of stand-alone or combined non-invasive imaging tests for the diagnosis of stable coronary artery disease: results from the EVINCI study

    Get PDF
    Aim: This study aimed at evaluating the cost-effectiveness of different non-invasive imaging-guided strategies for the diagnosis of obstructive coronary artery disease (CAD) in a European population of patients from the Evaluation of Integrated Cardiac Imaging in Ischemic Heart Disease (EVINCI) study.Methods and results: Cost-effectiveness analysis was performed in 350 patients (209 males, mean age 59 ± 9 years) with symptoms of suspected stable CAD undergoing computed tomography coronary angiography (CTCA) and at least one cardiac imaging stress-test prior to invasive coronary angiography (ICA) and in whom imaging exams were analysed at dedicated core laboratories. Stand-alone stress-tests or combined non-invasive strategies, when the first exam was uncertain, were compared. The diagnostic end-point was obstructive CAD defined as > 50% stenosis at quantitative ICA in the left main or at least one major coronary vessel. Effectiveness was defined as the percentage of correct diagnosis (cd) and costs were calculated using country-specific reimbursements. Incremental cost-effectiveness ratios (ICERs) were obtained using per-patient data and considering “no-imaging” as reference. The overall prevalence of obstructive CAD was 28%. Strategies combining CTCA followed by stress ECHO, SPECT, PET, or stress CMR followed by CTCA, were all cost-effective. ICERs values indicated cost saving from − 969€/cd for CMR-CTCA to − 1490€/cd for CTCA-PET, − 3,09 €/cd for CTCA-SPECT and − 3776€/cd for CTCA-ECHO. Similarly when considering early revascularization as effectiveness measure.Conclusion: In patients with suspected stable CAD and low prevalence of disease, combined non-invasive strategies with CTCA and stress-imaging are cost-effective as gatekeepers to ICA and to select candidates for early revascularization.</p

    Role of cardiac imaging in heart failure

    No full text
    Heart failure is the leading cause of mortality and rehospitalization in Western countries. With the development of new technologies applied to medical diagnostic pathways, cardiovascular imaging has rapidly gained ground. Therefore, the clinical cardiologist has to keep updated on the management of such innovative diagnostic tools which were once the exclusive domain of radiologists. The need to understand a new language is fundamental for the selection of diagnostic and therapeutic strategies in patients with heart failure, which is often the final destination for many cardiovascular diseases. Alongside standard diagnostic techniques such as chest radiography two-dimensional ultrasound and cardiac color Doppler, all of which are indispensable in daily practice, innovative tools have been defining their incremental role in cardiovascular imaging. Cardiac magnetic resonance (CMR), cardiac computed tomography (CT), speckle tracking, 3D echocardiography, new applications in nuclear medicine (SPECT MIBG), and "cardiac hybrid imaging" are emerging for research and are also playing a pivotal role in the clinical scenario. These techniques are useful the for non-invasive acquisition of diagnostic and prognostic information in heart failure. Whether the radiological and economic impact of these new technologies is sustainable is a question the clinical cardiologist will need to answer when considering the cost/benefit of the diagnostic tool selected among these methods

    Cardiovascular magnetic resonance for the diagnosis and management of heart failure with preserved ejection fraction

    No full text
    Heart failure with preserved ejection fraction (HFpEF) is characterized by an impaired ventricular filling resulting in the development of dyspnea and other HF symptoms. Even though echocardiography is the cornerstone to demonstrate structural and/or functional alterations of the heart as the underlying cause for the clinical presentation, cardiovascular magnetic resonance (CMR) represents the noninvasive gold standard to assess cardiac morphology, function, and tissue changes. Indeed, CMR allows quantification of biventricular volumes, mass, wall thickness, systolic function, and intra- and extracardiac flows; diastolic functional indices include transmitral and pulmonary venous velocities, left ventricular and left atrial filling velocities from volumetric changes, strain analysis from myocardial tagging, tissue phase contrast, and feature tracking. Moreover, CMR allows superior tissue characterization of the myocardium and the pericardium, which are crucial for a noninvasive etiological and histopathological assessment of HFpEF: conventional T1-weighted, T2-weighted, and post-contrast sequences are now complemented by quantitative mapping sequences, including T1 and T2 mapping as well as extracellular volume quantification. Further experimental sequences comprise diffusion tensor analysis, blood oxygenation-dependent sequences, hyperpolarized contrast agents, spectroscopy, and elastography. Finally, artificial intelligence is beginning to help clinicians deal with an increasing amount of information from CMR exams

    Cardiac magnetic resonance in patients with muscular dystrophies

    No full text
    Muscular dystrophies are inherited disorders sharing similar clinical features and dystrophic changes on muscle biopsy. Duchenne muscular dystrophy is the most common inherited muscle disease of childhood, and Becker muscular dystrophy is a milder allelic variant with a slightly lower prevalence. Myotonic dystrophy is the most frequent form in adults. Cardiac magnetic resonance is the gold standard technique for the quantification of cardiac chamber volumes and function, and also enables a characterisation of myocardial tissue. Most cardiac magnetic resonance studies in the setting of muscular dystrophy were carried out at single centres, evaluated small numbers of patients and used widely heterogeneous protocols. Even more importantly, those studies analysed more or less extensively the patterns of cardiac involvement, but usually did not try to establish the added value of cardiac magnetic resonance to standard echocardiography, the evolution of cardiac disease over time and the prognostic significance of cardiac magnetic resonance findings. As a result, the large and heterogeneous amount of information on cardiac involvement in muscular dystrophies cannot easily be translated into recommendations on the optimal use of cardiac magnetic resonance. In this review, whose targets are cardiologists and neurologists who manage patients with muscular dystrophy, we try to summarise cardiac magnetic resonance findings in patients with muscular dystrophy, and the results of studies evaluating the role of cardiac magnetic resonance as a tool for diagnosis, risk stratification and follow-up. Finally, we provide some practical recommendations about the need and timing of cardiac magnetic resonance examination for the management of patients with muscular dystrophy
    corecore