10 research outputs found
Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer
A high purity germanium crystal was operated in liquid argon as a Compton
suppressed radiation spectrometer. Spectroscopic quality resolution of less
than 1% of the full-width half maximum of full energy deposition peaks was
demonstrated. The construction of the small apparatus used to obtain these
results is reported. The design concept is to use the liquid argon bath to both
cool the germanium crystal to operating temperatures and act as a scintillating
veto. The scintillation light from the liquid argon can veto cosmic-rays,
external primordial radiation, and gamma radiation that does not fully deposit
within the germanium crystal. This technique was investigated for its potential
impact on ultra-low background gamma-ray spectroscopy. This work is based on a
concept initially developed for future germanium-based neutrinoless double-beta
decay experiments.Comment: Paper presented at the SORMA XI Conference, Ann Arbor, MI, May 200
Initial Component Testing for a Germanium Array Cryostat
This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and - coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain
The DAMIC-M experiment: Status and first results
The DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully depleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides single electron resolution through multiple non-destructive measurements of the individual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance by several orders of magnitude the exploration of the dark matter particle hypothesis, in particular of candidates pertaining to the so-called “hidden sector.” A prototype, the Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been recently installed at Laboratoire Souterrain de Modane and is currently taking data. We will report the status of the DAMIC-M experiment and first results obtained with LBC commissioning data
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
IMPROVING THE PHYSICS IMPACT OF NEXT-GENERATION 76GE NEUTRINOLESS DOUBLE-BETA DECAY EXPERIMENTS
Summary and Conclusions - It was shown that segmentation and pulse-shape discrimination can improve the discovery sensitivity of a next-gen 0vBB-decay experiment by 90%. - However, when practical aspects are considered (such as instrumenting each segment with front-end electronics), the discovery sensitivity is decreased by 19%. - This has extremely important consequences to proposed next-gen experiments since the two active collaborations have strongly advocated the use of segmented detectors for all or part of the experiment. - New germanium detector technology, currently under development, has demonstrated excellent multi-site background rejection capabilities without the complexity of segmentation or complicated PSD algorithms. - The physically-segmented p-type germanium detector technology has proven to be a useful and practical tool in modern nuclear physics. The PSEG technology deserves further development as it has the potential for use in a variety of applications
Recommended from our members
Dark Sectors 2016 Workshop: Community Report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
EXCESS workshop: Descriptions of rising low-energy spectra
International audienceMany low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop’s data repository together with a plotting tool for visualization