480 research outputs found
A pulsed, low-temperature beam of supersonically cooled free radical OH molecules
An improved system for creating a pulsed, low-temperature molecular beam of
OH radicals has been developed. We use a pulsed discharge to create OH from
HO seeded in Xe during a supersonic expansion, where the high-voltage pulse
duration is significantly shorter than the width of the gas pulse. The pulsed
discharge allows for control of the mean speed of the molecular packet as well
as maintains a low temperature supersonic expansion. A hot filament is placed
in the source chamber to initiate the discharge for shorter durations and at
lower voltages, resulting in a translationally and rotationally colder packet
of OH molecules
Soil conductivity study and implications for fish and farming compatibility in the Swinomish agricultural area
The Swinomish agricultural area, along the Swinomish Channel, is part of the Skagit River Delta, a major agrarian region in Puget Sound. Historically a complex system of tidal channels serving as salmon habitat, the tidelands have since been diked and drained. In 2005, the Swinomish Indian Tribal Community (SITC) began restoration to demonstrate compatibility of fish habitat and agriculture. Muted tidal regulators (MTRs) operated to optimize tidal inundation and fish passage, replaced traditional tidegates, and prompted a study to evaluate soil conductivity impacts on agriculture. Objectives included electromagnetic (EM) surveying of soil conductivity, qualitatively assessing EM results utilizing two additional methods, and assessing local crop suitability and restoration effectiveness for fish habitat and agriculture compatibility. All methods showed low conductivity throughout the majority of the area with isolated elevated levels adjacent to drainage ditches, the main Channel dike, and in low-lying depressional areas. Designed for periodic inundation, a restoration area yielded some of the highest conductivity levels. Using conversion formulas applicable to each conductivity measurement method, conductivity values were converted to salinity classes to evaluate potential adverse crop effects. The areas described above ranged from primarily ‘slightly saline’ and ‘moderately saline’ (many crop yields restricted), to ‘strongly saline’, with marginal ‘very strongly saline’ areas along the main dike and in the restoration area. However, the vast majority of the agricultural area could be categorized as ‘non-saline’, with negligible crop effects. These results indicate that the restoration designed to enhance fish habitat resulted in limited salinity intrusion to the adjacent cropland. This study, along with concurrent projects in the Swinomish agricultural area, suggests that fish and farming, two economically and culturally significant symbols of the region, may not only survive, but thrive in the same space
Perfect state distinguishability and computational speedups with postselected closed timelike curves
Bennett and Schumacher's postselected quantum teleportation is a model of
closed timelike curves (CTCs) that leads to results physically different from
Deutsch's model. We show that even a single qubit passing through a
postselected CTC (P-CTC) is sufficient to do any postselected quantum
measurement, and we discuss an important difference between "Deutschian" CTCs
(D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the
present outcome of an experiment. Then, based on a suggestion of Bennett and
Smith, we explicitly show how a party assisted by P-CTCs can distinguish a set
of linearly independent quantum states, and we prove that it is not possible
for such a party to distinguish a set of linearly dependent states. The power
of P-CTCs is thus weaker than that of D-CTCs because the Holevo bound still
applies to circuits using them regardless of their ability to conspire in
violating the uncertainty principle. We then discuss how different notions of a
quantum mixture that are indistinguishable in linear quantum mechanics lead to
dramatically differing conclusions in a nonlinear quantum mechanics involving
P-CTCs. Finally, we give explicit circuit constructions that can efficiently
factor integers, efficiently solve any decision problem in the intersection of
NP and coNP, and probabilistically solve any decision problem in NP. These
circuits accomplish these tasks with just one qubit traveling back in time, and
they exploit the ability of postselected closed timelike curves to create
grandfather paradoxes for invalid answers.Comment: 15 pages, 4 figures; Foundations of Physics (2011
Microstructural control of LPBF Inconel 718 through post processing of intentionally placed AM discontinuity distributions
A major untapped potential of laser powder bed fusion (LPBF) is the ability to additively manufacture (AM) parts with site-specific properties. However, robust methods of improving performance and manufacturing efficiency via spatial variations in microstructure are underexplored. This work investigates a method of creating several distinctive multi-modal microstructures in the nickel superalloy, Inconel 718, by performing a Hot Isostatic Pressing (HIP) procedure on characteristic LPBF discontinuities such as keyhole and lack of fusion (LOF) porosity, as well as large powder filled voids. Observed using electron backscattered diffraction, this approach leads to the formation of site-specific variations in microstructure and extreme bi-modal microstructures. Processing AM parts via this method facilitates the production of fully dense, equiaxed, and strain free material culminating in a substantial time saving per layer. Further optimisation is required in order to achieve an optimum volume fraction and distribution of γ″ precipitates in each heat treated microstructure
Variation of texture anisotropy and hardness with build parameters and wall height in directed-energy-deposited 316L steel
Directed energy deposition (DED) is an emerging technology with repair applications in critical aerospace components. Mechanical properties of DED components have been shown to vary significantly through a part, making it difficult to achieve the level of process control required for these applications. Using thermal data captured in-situ, cooling rates and melt pool dimensions were calculated and related to the final grain structure, captured by EBSD. The changes in cooling rate explain the microstructural variation between different processing parameters and through the build height. A new approach, using a cumulative anisotropy factor was implemented and correlates the variation in hardness with grain structure. Two regimes were found depending on the linear heat input in 316L, with high linear heat input resulting in great amounts of mechanical anisotropy on the component level. The relationships between thermal signature and mechanical properties suggest close control of anisotropy could be achieved by monitoring and controlling the melt pool size using a coaxial camera
Reconstruction of microscopic thermal fields from oversampled infrared images in laser-based powder bed fusion
This article elucidates the need to consider the inherent spatial transfer function (blur), of any thermographic instrument used to measure thermal fields. Infrared thermographic data were acquired from a modified, commercial, laser-based powder bed fusion printer. A validated methodology was used to correct for spatial transfer function errors in the measured thermal fields. The methodology was found to make a difference of 40% to the measured signal levels and a 174 °C difference to the calculated effective temperature. The spatial gradients in the processed thermal fields were found to increase significantly. These corrections make a significant difference to the accuracy of validation data for process and microstructure modeling. We demonstrate the need for consideration of image blur when quantifying the thermal fields in laser-based powder bed fusion in this wor
Supernova Neutrinos, Neutrino Oscillations, and the Mass of the Progenitor Star
We investigate the initial progenitor mass dependence of the early-phase
neutrino signal from supernovae taking neutrino oscillations into account. The
early-phase analysis has advantages in that it is not affected by the time
evolution of the density structure of the star due to shock propagation or
whether the remnant is a neutron star or a black hole. The initial mass affects
the evolution of the massive star and its presupernova structure, which is
important for two reasons when considering the neutrino signal. First, the
density profile of the mantle affects the dynamics of neutrino oscillation in
supernova. Second, the final iron core structure determines the features of the
neutrino burst, i.e., the luminosity and the average energy. We find that both
effects are rather small. This is desirable when we try to extract information
on neutrino parameters from future supernova-neutrino observations. Although
the uncertainty due to the progenitor mass is not small for intermediate
(), we
can, nevertheless, determine the character of the mass hierarchy and whether
is very large or very small.Comment: 8 pages, 15 figure
Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen
This study investigated the effects of nanosuspension and inclusion complex techniques on in vitro trypsin inhibitory activity of naproxen—a member of the propionic acid derivatives, which are a group of antipyretic, analgesic, and non-steroidal anti-inflammatory drugs. Nanosuspension and inclusion complex techniques were used to increase the solubility and anti-inflammatory efficacy of naproxen. The evaporative precipitation into aqueous solution (EPAS) technique and the kneading methods were used to prepare the nanosuspension and inclusion complex of naproxen, respectively. We also used an in vitro protease inhibitory assay to investigate the anti-inflammatory effect of modified naproxen formulations. Physiochemical properties of modified naproxen formulations were analyzed using UV, IR spectra, and solubility studies. Beta-cyclodextrin inclusion complex of naproxen was found to have a lower percentage of antitryptic activity than a pure nanosuspension of naproxen did. In conclusion, nanosuspension of naproxen has a greater anti-inflammatory effect than the other two tested formulations. This is because the nanosuspension formulation reduces the particle size of naproxen. Based on these results, the antitryptic activity of naproxen nanosuspension was noteworthy; therefore, this formulation can be used for the management of inflammatory disorders
Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections.
Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4 <sup>+</sup> and CD8 <sup>+</sup> T cells. Co-culturing CD4 <sup>+</sup> with autologous CD8 <sup>+</sup> T cells from ART-suppressed HIV <sup>+</sup> donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8 <sup>+</sup> T cells. This trispecific antibody mediates CD4 <sup>+</sup> and CD8 <sup>+</sup> T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection
- …