233 research outputs found

    Iridium-catalyzed Borylation of Pyrene: Irreversibility and the Influence of Ligand on Selectivity

    Get PDF
    The iridium-catalyzed borylation of pyrene, using 4,4′-dimethyl-2,2′-bipyridine as the ligand, in the presence of t-BuOK, gave a mixture of 2,4,7,9-tetrakis(Bpin)pyrene (c4) and its 2,4,7,10-isomer (m4) in a 2.2:1 ratio, and the selectivity of the Ir-catalyzed borylation of pyrene is kinetically determined and can be influenced to some extent by the nature of the ligand

    Interactions of variously coated gold and silver nanoparticles with a bis(triarylborane) photodyanmic therapy (PDT)-dye; their cellular uptake, cytotoxicity and photo-activity

    Get PDF
    Background and purpose: Diethynylarene-linked bis(triarylborane) tetracations can be used as probes for fluorimetric and Raman sensing of biomacromolecules, as well as promising theragnostic agents. Among them, bis(triarylborane) fluorophore (TAB3), when bonded to Ag nanoparticles (NP), stood out with specific properties such as Raman signal enhancemen of the TAB3 dye in a cuvette. However, TAB3 dye - nanoparticle composites have not been studied in biological systems. For this reason, questions arose as to whether different types of metal nanoparticles (Au or Ag-based) with different coatings (negatively charged citrate or neutral PVP) could be efficiently stained with the TAB3 dye in a cuvette. The aim of this research was to examine Au and Ag nanoparticles of similar size (20-25 nm) with different stabilizers for their cellular uptake, cytotoxicity in the dark and under visible light radiation, to characterize the interactions of nanoparticles with the TAB3 fluorophore, and to study NP-TAB3 composites in cells, evaluate their intracellular staining, as well as possible photoinduced release and biological activity. Materials and methods: The binding constants of Au- and Ag- based nanoparticles with TAB3 were determined by fluorimetric titrations. The cytotoxic effect of NPs was determined by the survival of A549 cells (MTT assay). Cellular uptake of both NP and NP-TAB3 composites were performed by live cell imaging experiments. Results: The Au- or Ag-based NPs with different coatings bind to the TAB3 with high affinity. These NPs, as well as TAB3-NP complexes, efficiently enter living human cells, accumulating in cytoplasm with no apparent selectivity for a particular organelle. Even prolonged 3-day treatment with the NPs studied did not show any toxic effect on the cells. Bioimaging studies in cells revealed that the TAB3-NP complex does not intracellularly dissociate; the previously reported photo-bioactivity of TAB3 is completely inhibited by binding to NPs. Conclusion: Au- and Ag NPs were non-covalently stained by TAB3, irrespective of the different coatings, with similar binding affinities. Emission from TAB3 is strongly quenched by the NPs, but not completely. Experiments on living human cells revealed that neither free NPs, nor their composites with TAB3, were toxic. Bioimaging studies by confocal microscopy revealed that all NPs efficiently enter living cells within 90 min. Colocalization experiment with simultaneous collection of data in the reflection and fluorescence modes demonstrated that the TAB3 dye remained bound to NPs inside cells. Strong irradiation of TAB3-NP inside cells with a 457 nm laser did not yield any damage to the cells, at variance with our previously shown very strong photo-bioactivity of the TAB3 dye alone. Thus, binding of a chromophore to a nanoparticle can inhibit the chromophore’s ability to undergo photo-induced singlet oxygen production, consequently blocking its photo-bioactivity

    Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C–H Functionalization of (Poly)fluoroarenes in Organic Synthesis

    Get PDF
    The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C–H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C–H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C–H bonds ortho to C–F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds

    Nickel boryl complexes and the nickel-catalyzed alkyne borylation

    Get PDF
    The first nickel bis-boryl complexes cis [Ni(iPr2ImMe)2(Bcat)2], cis [Ni(iPr2ImMe)2(Bpin)2] and cis [Ni(iPr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni(iPr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 (iPr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent to the bonding situation of “non-classical” H2 complexes. [Ni(iPr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2 borylation product in excellent yields, but also provides, additionally, an efficient approach to other products such as C–C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni(iPr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C=C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni(iPr2ImMe)2(η2-cis-(Bcat)(Me)C=C(Me)(Bcat))] and [Ni(iPr2ImMe)2(η2-cis-(Bcat)(H7C3)C=C(C3H7)(Bcat))]

    Controlled Formation of Porous 2D Lattices from C 3 ‐symmetric Ph 6 −Me‐Tribenzotriquinacene‐OAc 3

    Get PDF
    The on-surface self-assembly of molecules to form holey nanographenes is a promising approach to control the properties of the resulting 2D lattice. Usually, planar molecules are utilized to prepare flat, structurally confined molecular layers, with only a few recent examples of warped precursors. However, control of the superstructures is limited thus far. Herein, we report the temperature-controlled self-assembly of a bowl-shaped, acetylated C3 -symmetric hexaphenyltribenzotriquinacene derivative on Cu(111). Combining scanning tunneling microscopy (STM) and density functional theory (DFT) confirms the formation of highly differing arrangements starting with π-stacked bowl-to-bowl dimers at low coverage at room temperature via chiral honeycomb structures, an intermediate trigonal superstructure, followed by a fully carbon-based, flattened hexagonal superstructure formed by on-surface deacetylation, which is proposed as a precursor for holey graphene networks with unique defect structures

    Triarylborane Dyes as a Novel Non‐Covalent and Non‐Inhibitive Fluorimetric Markers for DPP III Enzyme

    Get PDF
    Novel dyes were prepared by simple “click CuAAC” attachment of a triarylborane–alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane–pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane–pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100‐fold) fluorescence increase, whereby the triarylborane–pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non‐covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates

    Tetracationic bis-triarylborane 1, 3-butadiyne as a combined fluorimetric and Raman probe for simultaneous and selective sensing of various DNA, RNA and proteins

    Get PDF
    A new bis-triarylborane tetracation (4-Ar2B-3, 5-Me2C6H2)-C≡C- C≡C-(3, 5-Me2C6H2-4-BAr2 [Ar = (2, 6-Me2-4-NMe3-C6H2)+] (24+) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5- (4-Ar2B-3, 5-Me2C6H2)-2, 2’-(C4H2S)2-5’-(3, 5-Me2C6H2-4-BAr2) (34+). Single-crystal X-ray diffraction data on the neutral bis- triarylborane precursor 2N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 24+ and indicated the importance of the properties of the linker connecting the two triarylboranes. Using the butadiyne- rather than a bithiophene linker resulted in an opposite emission effect (quenching vs enhancement), and 24+ bound to BSA 100 times stronger than 34+. Moreover, 24+ interacted strongly with ss-RNA, and circular dichroism (CD) results suggest ss- RNA chain-wrapping around the rod-like bis-triarylborane dumbbell structure like a thread around a spindle, a very unusual mode of binding of ss-RNA with small molecules. Furthermore, 24+ yielded strong Raman/SERS signals, allowing DNA or protein detection at ca. 10 nM concentrations. The above observations, combined with low cytotoxicity, efficient human cell uptake and organelle-selective accumulation make such compounds intriguing novel lead structures for bio-oriented, dual fluorescence/Raman-based applications

    Taming the beast : fluoromesityl groups induce a dramatic stability enhancement in boroles

    Get PDF
    The electron-deficient pentaarylborole 1-(2′,4′,6′-tris(trifluoromethyl)phenyl)-2,3,4,5-tetraphenylborole (1) has been synthesised with the long-term aim of developing borole-based optoelectronic materials. The bulky 2,4,6-tris(trifluoromethyl)phenyl (FMes) group on the boron atom of 1 significantly improves (>600 times) its air stability relative to its mesityl analogue. Moreover, 1 shows good thermal stability without undergoing the dimerisation or isomerisation reactions reported for some other boroles. A triarylborole analogue (2), belonging to a new class of borole with the 3- and 4-positions of the BC4 ring linked by a -(CH2)3- group, has also been synthesised to elucidate the influence of carbon-bonded substituents on the stability of boroles. Both boroles were prepared through the reaction of Li[FMesBF3] and divinyldilithium reagents, a new and general method for borole syntheses. Compound 2 was found to isomerise through a [1,3]-H shift and double-bond rearrangement to an s-trans-butadienylborane species under highly basic (NaOH) conditions. The increased steric crowding at the boron centre through incorporation of the FMes group does not preclude binding of Lewis bases to either 1 or 2, as demonstrated by their fully reversible binding of pyridine. Interestingly, 1 exhibits a blue-shifted absorption spectrum, as compared with its mesityl analogue, a result contrary to previous understanding of the influence of substituent electronics on the absorption spectra of boroles. Most importantly, these boroles exhibit much greater air-stability than previously reported analogues without sacrificing the strong electron-accepting ability that makes boroles so attractive; indeed, 1 and 2 have very low reduction potentials of -1.52 and -1.69 eV vs. Fc/Fc+, respectively
    corecore