110 research outputs found

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    Molecular Basis for the Recognition of Adenomatous Polyposis Coli by the Discs Large 1 Protein

    Get PDF
    The human Discs Large 1 (DLG1) protein uses two of its three PDZ domains to interact with the C-terminal peptide of the Adenomatous Polyposis Coli (APC) tumor suppressor protein. The DLG1/APC complex inhibits the cell cycle progression from the G0/G1 to the S phase, regulates epithelial cell migration and morphogenesis, and is required for polarization of the microtubule cytoskeleton. However, the molecular details of how DLG1 recognizes APC is not clear. In this study, we performed biochemical and biophysical assays to investigate the interactions between PDZ domains of DLG1 and the C-terminal peptide of APC. In addition, we determined the crystal structures of the PDZ1 and PDZ2 domains of DLG1 each in complex with the C-terminal 11-residue peptide of APC. Our biochemical, biophysical, and structural results revealed structural elements and residues on PDZ1 and PDZ2 domains of DLG1 and on APC crucial for their mutual interaction. In particular, our results show that the β2/β3 loops of PDZ1 and PDZ2 play important roles in contributing to the binding affinities between PDZ domains and APC, through interacting with the residues upstream of the canonical PDZ-binding S/T-X-V motif. The results provide new insights into the binding mode of a defined C-terminal segment of APC by the PDZ domains of DLG1

    Beyond the Binding Site: The Role of the β2 – β3 Loop and Extra-Domain Structures in PDZ Domains

    Get PDF
    A general paradigm to understand protein function is to look at properties of isolated well conserved domains, such as SH3 or PDZ domains. While common features of domain families are well understood, the role of subtle differences among members of these families is less clear. Here, molecular dynamics simulations indicate that the binding mechanism in PSD95-PDZ3 is critically regulated via interactions outside the canonical binding site, involving both the poorly conserved loop and an extra-domain helix. Using the CRIPT peptide as a prototypical ligand, our simulations suggest that a network of salt-bridges between the ligand and this loop is necessary for binding. These contacts interconvert between each other on a time scale of a few tens of nanoseconds, making them elusive to X-ray crystallography. The loop is stabilized by an extra-domain helix. The latter influences the global dynamics of the domain, considerably increasing binding affinity. We found that two key contacts between the helix and the domain, one involving the loop, provide an atomistic interpretation of the increased affinity. Our analysis indicates that both extra-domain segments and loosely conserved regions play critical roles in PDZ binding affinity and specificity

    Alternative splicing of the human gene SYBL1 modulates protein domain architecture of longin VAMP7/TI-VAMP, showing both non-SNARE and synaptobrevin-like isoforms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of intracellular vesicle trafficking is an ideal target to weigh the role of alternative splicing in shaping genomes to make cells. Alternative splicing has been reported for several Soluble <it>N</it>-ethylmaleimide-sensitive factor Attachment protein REceptors of the vesicle (v-SNAREs) or of the target membrane (t-SNARES), which are crucial to intracellular membrane fusion and protein and lipid traffic in Eukaryotes. However, splicing has not yet been investigated in Longins, i.e. the most widespread v-SNAREs. Longins are essential in Eukaryotes and prototyped by VAMP7, Sec22b and Ykt6, sharing a conserved N-terminal Longin domain which regulates membrane fusion and subcellular targeting. Human VAMP7/TI-VAMP, encoded by gene SYBL1, is involved in multiple cell pathways, including control of neurite outgrowth.</p> <p>Results</p> <p>Alternative splicing of SYBL1 by exon skipping events results in the production of a number of VAMP7 isoforms. In-frame or frameshift coding sequence modifications modulate domain architecture of VAMP7 isoforms, which can lack whole domains or domain fragments and show variant or extra domains. Intriguingly, two main types of VAMP7 isoforms either share the inhibitory Longin domain and lack the fusion-promoting SNARE motif, or vice versa. Expression analysis in different tissues and cell lines, quantitative real time RT-PCR and confocal microscopy analysis of fluorescent protein-tagged isoforms demonstrate that VAMP7 variants have different tissue specificities and subcellular localizations. Moreover, design and use of isoform-specific antibodies provided preliminary evidence for the existence of splice variants at the protein level.</p> <p>Conclusions</p> <p>Previous evidence on VAMP7 suggests inhibitory functions for the Longin domain and fusion/growth promoting activity for the Δ-longin molecule. Thus, non-SNARE isoforms with Longin domain and non-longin SNARE isoforms might have somehow opposite regulatory functions. When considering splice variants as "natural mutants", evidence on modulation of subcellular localization by variation in domain combination can shed further light on targeting determinants. Although further work will be needed to characterize identified variants, our data might open the route to unravel novel molecular partners and mechanisms, accounting for the multiplicity of functions carried out by the different members of the Longin proteins family.</p

    A Global Characterization and Identification of Multifunctional Enzymes

    Get PDF
    Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What’s more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    Cellular binding partners of the human papillomavirus E6 protein

    Get PDF
    The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis

    Challenges and Pitfalls in the Management of Parathyroid Carcinoma: 17-Year Follow-Up of a Case and Review of the Literature

    Get PDF
    A 29-year-old man presented to his primary care physician with nausea, severe weight loss and muscle weakness. He had a hard, fixed neck swelling. He was severely hypercalcaemic with 10-fold increased parathyroid hormone (PTH) concentrations. A diagnosis of primary hyperparathyroidism was established and the patient was referred for parathyroidectomy. At neck exploration, an enlarged parathyroid gland with invasive growth into the thyroid gland was found and removed, lymph nodes were cleared and hemithyroidectomy was performed. A suspected diagnosis of parathyroid carcinoma was confirmed histologically. Serum calcium and PTH levels normalised post-operatively, but hyperparathyroidism recurred within 3 years of surgery. Over the following 17 years, control of hypercalcaemia represented the most difficult challenge despite variable success achieved with repeated surgical interventions, embolisations, radiofrequency ablation of metastases and treatment with calcimimetics, bisphosphonates and haemodialysis using low-dialysate calcium. In this paper, we report the challenges and pitfalls we encountered in the management of our patient over nearly two decades of follow-up and review recent literature on the topic

    Gene Expression Profiling in Gastric Mucosa from Helicobacter pylori-Infected and Uninfected Patients Undergoing Chronic Superficial Gastritis

    Get PDF
    Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray using in vitro culture cells and in vivo gastric biopsies from patients of the Chronic Abdominal Complaint. To further explore the effects of H. pylori infection on host gene expression, we have collected the gastric antral mucosa samples from 6 untreated patients with gastroscopic and pathologic confirmation of chronic superficial gastritis. Among them three patients were infected by H. pylori and the other three patients were not. These samples were analyzed by a microarray chip which contains 14,112 cloned cDNAs, and microarray data were analyzed via BRB ArrayTools software and Ingenuity Pathways Analysis (IPA) website. The results showed 34 genes of 38 differentially expressed genes regulated by H. pylori infection had been annotated. The annotated genes were involved in protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on. The 82% of these genes (28/34) were categorized in three molecular interaction networks involved in gene expression, cancer progress, antigen presentation and inflammatory response. The expression data of the array hybridization was confirmed by quantitative real-time PCR assays. Taken together, these data indicated that H. pylori infection could alter cellular gene expression processes, escape host defense mechanism, increase inflammatory and immune responses, activate NF-κB and Wnt/β-catenin signaling pathway, disturb metal ion homeostasis, and induce carcinogenesis. All of these might help to explain H. pylori pathogenic mechanism and the gastroduodenal pathogenesis induced by H. pylori infection
    corecore