211 research outputs found

    Association of C-reactive protein and metabolic risk with cognitive effects of lurasidone in patients with schizophrenia

    Get PDF
    BACKGROUND: Accumulating evidence has implicated insulin resistance and inflammation in the pathophysiology of cognitive impairments associated with neuropsychiatric disorders. This post-hoc analysis based on a placebo-controlled trial investigated the effect of inflammation (indexed by CRP) and metabolic risk factors on cognitive performance in patients with schizophrenia treated with lurasidone. METHODS: Acutely exacerbated patients with schizophrenia were randomized to lurasidone (80 or 160 mg/day), quetiapine XR 600 mg/day, or placebo. A wide range CRP test and a cognitive assessment using the CogState computerized battery were performed at baseline and week 6 study endpoint. Associations between log-transformed CRP, high density lipoprotein (HDL), homeostatic model assessment of insulin resistance (HOMA-IR) and treatment response were evaluated. RESULTS: CRP combined with HDL, triglyceride-to-HDL (TG/HDL) ratio, or HOMA-IR at study baseline were significant moderators of the improvement in cognitive performance associated with lurasidone 160 mg/day (vs. placebo) treatment (p \u3c .05). Greater placebo-corrected treatment effect size on the CogState composite score was observed for patients in the lurasidone 160 mg/day treatment group who had either low CRP and high HDL (d = 0.43), or low CRP and low HOMA-IR (d = 0.46). Interactive relationships between CRP, HDL, TG/HDL, HOMA-IR and the antipsychotic efficacy of lurasidone or quetiapine XR were not significant. There were no significant associations between antipsychotic treatment and changes in CRP level at study endpoint. CONCLUSIONS: Findings of this post-hoc analysis based on a placebo-controlled trial in patients with schizophrenia suggest that baseline CRP level combined with measures of metabolic risk significantly moderated the improvement in cognitive performance associated with lurasidone 160 mg/day (vs. placebo) treatment. Our findings underscore the importance of maintaining a low metabolic risk profile in patients with schizophrenia

    A multi-parametric wearable system to monitor neck movements and respiratory frequency of computer workers

    Get PDF
    Musculoskeletal disorders are the most common form of occupational ill-health. Neck pain is one of the most prevalent musculoskeletal disorders experienced by computer workers. Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the leading causes of neck pain. These factors may also alter respiratory functions. Health and safety interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders and reduce the consequent economic burden. In this work, a multi-parametric wearable system based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing activity of computer workers. The sensing elements were positioned on the neck, in the frontal and sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results showed the good performances of the proposed system in monitoring the aforementioned parameters when compared to optical reference systems. The wearable system is able to well-match the trend in time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and breath-by-breath respiratory frequency values with percentage errors ≤6.09% and ≤1.90%, during quiet breathing and tachypnea, respectively

    Disposition of quinapril and quinaprilat in the isolated perfused rat kidney

    Full text link
    An isolated perfused rat kidney model was used to probe the renal disposition of quinapril and quinaprilat after separate administration of each drug species. Control studies were performed with drug-free perfusate ( n=8 ) and perfusate containing quinapril ( n=9 ) quinaprilat ( n=7 ) at initial drug concentrations of 1000 ng/ml (including corresponding tracer levels of tritiated drug). Physiologic parameters were within the normal range of values for this technique and were stable for the duration of each experiment. Quinapril and quinaprilat concentrations were determined in perfusate, urine, and perfusate ultrafiltrate using a specific and sensitive reversed-phase HPLC procedure with radiochemical detection, coupled to liquid scintillation spectrometry. Perfusate protein binding was determined using an ultrafiltration method at 37°C. The total renal learance of quinapril ( CLr ) was calculated as Dose/AUC (0-∞), and is represented by the sum of its urinary and metabolic clearances. The urinary clearances ( CLe ) of quinapril and quinaprilat were calculated as urinary excretion rate divided by midpoint perfusate concentration for each respective species. Of the total renal clearance for quinapril ( CLr =4.49 ml/min), less than 0.1% was cleared as unchanged drug ( CLe =0.004 ml/min); over 99% of the drug was cleared as quinaprilat formed in the kidney. The clearance ratio of quinapril [ CR=CLr/(fu·GFR )] was 41.0, a value representing extensive tubular secretion into the renal cells. Following quinaprilat administration, the clearance ratio of metabolite [ CR=CLe/(fu β GFR) ] was 3.85, indicating a net secretion process for renal elimination.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45050/1/10928_2006_Article_BF02354286.pd

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    ALICE: Physics Performance Report, Volume I

    Get PDF
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, 2. relevant experimental conditions at the LHC, 3. a short summary and update of the subsystem designs, and 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes
    corecore