57 research outputs found

    Outcomes of Non-Pharmacological Nursing Interventions’ on Patients with Chronic Pain

    Get PDF
    Considering the high number of people who experience chronic pain, with need of differentiated care, it is relevant to identify non-pharmacological nursing interventions in pain control and health gains. The objective of this paper is to identify nursing intervention and outcomes of non-pharmacological measures in chronic pain. The results of the analysis of literature allow us to synthesize some efficient interventions as: (1) auricular point acupressure; (2) hearing stimulation; (3) manipulation of the cervical and thoracic spine; (4) therapeutic massage (5) physical activity; (6) incentive the use of woolen underwear; (7) therapeutic dialogue and (8) behavioral interventions. Significant improvements in pain control as found, like increased functional capacity, improved quality of life, control of psychological maladjustment, and increased health literacy. This nursing interventions are recommended in the hospital environment and in primary health care.info:eu-repo/semantics/publishedVersio

    Diseño del Módulo de Salidas Gráficas de la Carta Geoambiental

    Get PDF
    Fil: Marquínez García, Jorge. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: García Manteca, Pilar. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Sánchez, D. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Tobio, María Inés. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Roxana. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Candaosa, Norberto Gabriel. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Ferpozzi, Federico Javier. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Silvia Beatríz. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Colina, A. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España

    Diseño del Módulo de Salidas Gráficas de la Carta Hidrogeológica

    Get PDF
    Fil: Marquínez García, Jorge. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: García Manteca, Pilar. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Sánchez, D. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Colina, A. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Candaosa, Norberto Gabriel. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Boujon, Pamela S. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Tobio, María Inés. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Ferpozzi, Federico Javier. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Silvia Beatríz. SEGEMAR: Servicio Geológico Minero Argentino; Argentina

    Protocolo para la Incorporación de Cartas Temáticas de la Dirección de Geología Ambiental y Aplicada de la República de Argentina

    Get PDF
    Fil: Marquínez García, Jorge. SADIM: Sociedad Asturiana de Diversificación Minera; España.Fil: García Manteca, Pilar. SADIM: Sociedad Asturiana de Diversificación Minera; España.Fil: Sánchez, D. SADIM: Sociedad Asturiana de Diversificación Minera; España.Fil: Colina, A. SADIM: Sociedad Asturiana de Diversificación Minera; España.Fil: Fernández Iglesias, Juan Carlos. SADIM: Sociedad Asturiana de Diversificación Minera; España.Fil: Tobio, María Inés. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Roxana. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Candaosa, Norberto Gabriel. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Ferpozzi, Federico Javier. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Silvia Beatríz. SEGEMAR: Servicio Geológico Minero Argentino; Argentina

    Diseño del Módulo de Salidas Gráficas de la Carta de Peligrosidad Geológica

    Get PDF
    Fil: Marquínez García, Jorge. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: García Manteca, Pilar. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Sánchez, D. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Colina, A. INDUROT: Instituto de Recursos Naturales y Ordenación del Territorio – Universidad de Oviedo; España.Fil: Tobio, María Inés. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Roxana. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: González, María Alejandra. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Elisondo, Manuela. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Villegas, Daniela. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Candaosa, Norberto Gabriel. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Ferpozzi, Federico Javier. SEGEMAR: Servicio Geológico Minero Argentino; Argentina.Fil: Chavez, Silvia Beatríz. SEGEMAR: Servicio Geológico Minero Argentino; Argentina

    Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan

    Get PDF
    Purpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system. Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen. Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration. Chitosan not only imparted a positive charge to the surface of the microparticles but was also able to increase the serum specific IgG antibody responses significantly. Conclusions: The cytokine assays showed that the serum IgG antibody response induced is different according to the formulation, indicated by the differential levels of interleukin 4 (IL-4), interleukin 6 (IL-6) and interferon gamma (IFN-γ). The microparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-4, IL-6 and IFN-γ

    Preparation and Evaluation of Poly(Ethylene Glycol)–Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    Get PDF
    A series of monomethoxy poly(ethylene glycol)–poly(lactide) (mPEG–PLA) diblock copolymers were designed according to polymer–drug compatibility and synthesized, and mPEG–PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
    corecore