5 research outputs found

    Innovationen in der Chemie der Cyclopentadienid-Anionen: Nachwachsende Rohstoffquellen, Elektronentransfer und Selektive Dicarboxylierung

    Get PDF
    In dieser Arbeit wurde ein traditionsreiches Gebiet der metallorganischen Chemie – die Chemie des Cyclopentadienyl-Liganden – in Hinblick auf drei innovative Schwerpunktthemen aufgegriffen und fortentwickelt: Die bedeutende Chemie der Cyclopentadienylmetallkomplexe wurde exemplarisch für die elektronenreichen Übergangsmetalle der Gruppen 8-12 von einer petrochemischen auf eine nachwachsende Rohstoffquelle, Guajazulen, als Cp-Ligandsynthon umgestellt (Kap. 3.1). Zudem wurden erstmals rein organische Salze des Cyclopentadienid-Anions Cat[Cp] als vielseitig einsetzbare Ein-Elektronen-Reduktionsmittel präsentiert und ihre Vorteile gegenüber anderer Reduktionsmittel anhand der Reduktion organischer Halbleitermaterialien auf Rylendiimid-Basis zu kristallinen Radikalanion- und -dianionsalzen herausgearbeitet (Kap. 3.2). Schließlich wurde eine hochselektive, an die Kolbe-Schmitt-Synthese erinnernde, ortho-Dicarboxylierung des CH-aciden Cyclopentadiens vorgestellt, welche mit Methylcarbonat-Salzen Cat[OCO2Me] als Base und CO2-Quelle gelingt (Kap. 3.3). Reaktivitätsstudien von Cat[Cp] gegenüber CO2-verwandten Elektrophilen waren ebenfalls Gegenstand dieser Forschungsarbeit (Kap. 3.4). Dass Methylcarbonat-Salze mit symmetrischen Onium-Kationen als gut kristallisierende Template für die Synthese von bisher schlecht zugänglichen Metallat-Komplexen dienen können, wurde schlussendlich in Kapitel 3.5 ausführlich beleuchtet

    Synthesis of Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylboration

    No full text
    Allylboration of ketones with γ-disubstituted allyl­boronic acids is performed in the presence of chiral BINOL derivatives. The reaction is suitable for single-step creation of adjacent quaternary stereo­centers with high selectivity. We show that, with an appropriate choice of the chiral catalyst and the stereo­isomeric prenyl substrate, full control of the stereo- and enantio­selectivity is possible in the reaction

    Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization

    No full text
    We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoelectron tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.<br /

    Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization

    No full text
    We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule
    corecore