76 research outputs found

    Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes

    Get PDF
    Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1’s intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42’s unresponsiveness. Rather, Zfp42’s promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.We thank the Montpellier Ressources Imagerie facility (BioCampus Montpellier, Centre National de la Recherche Scientifique [CNRS], INSERM, University of Montpellier) and for computer resources from CINECA (ISCRA grant thanks to computer resources from INFN and CINECA [ISCRA Grant HP10C8JWU7]). G.C., Q.S., and F.B. were supported by a grant from the European Research Council (Advanced Grant 3DEpi, 788972) and by the CNRS. This work was funded by EMBO and the Wellcome Trust (ALTF1554-2016 and 206475/Z/17/Z; to M.I.R.) as well as the Deutsche Forschungsgemeinschaft (KR3985/7-3 and MU 880/16-1 to S.M.)

    IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation

    Get PDF
    Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation

    1000 x Open access: Der Hochschulschriftenserver der SLUB speichert die eintausendste elektronische Publikation aus der TU Dresden

    Get PDF
    Open Access bezeichnet den Wunsch, wissenschaftliche Literatur und Materialien im Internet prinzipiell frei, d.h. kostenlos und ohne Lizenzbeschränkungen, zugänglich zu machen

    Improving Deterministic and Randomized Exponential-Time Algorithms for the Satisfiability, the Colorability, and the Domatic Number Problem

    No full text
    NP-complete problems cannot have efficient algorithms unless P = NP. Due to their importance in practice, however, it is useful to improve the known exponential-time algorithms for NP-complete problems. We survey some of the recent results on such improved exponential-time algorithms for the NP-complete problems satisfiability, graph colorability, and the domatic number problem. The deterministic time bounds are compared with the corresponding time bounds of randomized algorithms, which often run faster but only at the cost of having a certain error probability
    • …
    corecore