32 research outputs found

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells

    Get PDF
    Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter

    Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges

    No full text
    CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized the field of oncology in recent years. This innovative shift in cancer treatment also provides the opportunity to improve therapies for many patients suffering from various autoimmune diseases. Recent studies have confirmed the therapeutic suppressive potential of regulatory T cells (Tregs) to modulate immune response in autoimmune diseases. However, the polyclonal character of regulatory T cells and their unknown TCR specificity impaired their therapeutic potency in clinical implementation. Genetical engineering of these immune modulating cells to express antigen-specific receptors and using them therapeutically is a logical step on the way to overcome present limitations of the Treg strategy for the treatment of autoimmune diseases. Encouraging preclinical studies successfully demonstrated immune modulating properties of CAR Tregs in various mouse models. Still, there are many concerns about targeted Treg therapies relating to CAR target selectivity, suppressive functions, phenotype stability and safety aspects. Here, we summarize recent developments in CAR design, Treg biology and future strategies and perspectives in CAR Treg immunotherapy aiming at clinical translation

    Chimeric antigen receptor T cells: power tools to wipe out leukemia and lymphoma

    No full text
    Adoptive cell therapy for malignant diseases is showing promise in recent early-phase trials in the treatment of B cell leukemia/lymphoma. Genetically engineered with a tumor-specific chimeric antigen receptor, patient's T cells produce lasting and complete leukemia regression. However, treatment is associated with some toxicity which needs our attention and the field still faces some hurdles at the scientific, technologic and clinical levels. Surmounting these obstacles will establish chimeric antigen receptor T cell therapy as a powerful approach to cure hematologic malignancies, paving the way for the treatment of other common types of cancer in the future

    Coexpressed Catalase Protects Chimeric Antigen Receptor-Redirected T Cells as well as Bystander Cells from Oxidative Stress-Induced Loss of Antitumor Activity

    No full text
    Treatment of cancer patients by adoptive T cell therapy has yielded promising results. In solid tumors, however, T cells encounter a hostile environment, in particular with increased inflammatory activity as a hallmark of the tumor milieu that goes along with abundant reactive oxygen species (ROS) that substantially impair antitumor activity. We present a strategy to render antitumor T cells more resilient toward ROS by coexpressing catalase along with a tumor specific chimeric Ag receptor (CAR) to increase their antioxidative capacity by metabolizing H2O2. In fact, T cells engineered with a bicistronic vector that concurrently expresses catalase, along with the CAR coexpressing catalase (CAR-CAT), performed superior over CAR T cells as they showed increased levels of intracellular catalase and had a reduced oxidative state with less ROS accumulation in both the basal state and upon activation while maintaining their antitumor activity despite high H2O2 levels. Moreover, CAR-CAT T cells exerted a substantial bystander protection of nontransfected immune effector cells as measured by CD3 zeta chain expression in bystander T cells even in the presence of high H2O2 concentrations. Bystander NK cells, otherwise ROS sensitive, efficiently eliminate their K562 target cells under H2O2-induced oxidative stress when admixed with CAR-CAT T cells. This approach represents a novel means for protecting tumor-infiltrating cells from tumor-associated oxidative stress-mediated repression

    Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors

    No full text
    BackgroundRegulatory T cells (Tregs) play an important role in the maintenance of immune homeostasis and the establishment of immune tolerance. Since Tregs do not secrete endogenous IL-2, they are especially dependent on external IL-2. IL-2 deficiency leads to lower Treg numbers, instability of the Treg phenotype and loss of immune regulation. After organ transplantation, patients are treated with calcineurin inhibitors (CNIs), which further limits available IL-2. Application of low-dose IL-2 expands Tregs but also activates NK and CD8+ T cells. It was recently shown that graft-specific Tregs recognizing mismatched MHC I molecules via a chimeric antigen receptor were far more potent than polyclonal Tregs in the regulation of immune responses after solid organ transplantation in a humanized mouse model. MethodsTherefore, our aim was to enhance the function and stability of transferred CAR-Tregs via expression of membrane-associated IL-2 (mbIL-2). ResultsmbIL-2 promoted higher survival, phenotypic stability, and function among CAR-Tregs than observed in clinical trials. The cells were also more stable under inflammatory conditions. In a preclinical humanized mouse model, we demonstrated that mbIL-2 CAR Tregs survive better in the Treg niche than control CAR Tregs and are even resistant to CNI therapy without affecting other Tregs, thus acting mainly in cis. DiscussionThe functional and phenotypic improvements observed after membrane-attached IL-2 expression in CAR-Tregs will be important step for enhancing CAR-Treg therapies currently being tested in clinical trials for use after kidney and liver transplantation as well as in autoimmune diseases

    Galectin-3 prevents TCR synapse formation in late-stage T cells.

    No full text
    <p>(A) CD7<sup>−</sup> and CD7<sup>+</sup> T cells were activated by incubation with anti-CD3 mAb plus anti-human CD28 mAb or as control by an isotype-matched IgG1 (medium). Cells were stained for TCR-alpha/beta (green), CD7 (blue), CD3 (red) and for galectin-3 (yellow). Immunofluorescence was visualized by a LSM. Alternatively cells were stained with mAbs specific to CD7 and subsequently recorded for gal-3 expression by staining with the anti-human gal-3mAb or as control by an isotype-matched IgG and analyzed by flow cytometry. A representative experiment out of five is shown. Galectin-3 specific signals were quantitatively recorded by a LSM as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030713#s4" target="_blank">Materials and Methods</a>. A minimum of 100 cells for each data point was recorded. (B) To monitor location of galectin-3 in lipid raft formation, isolated CD7<sup>−</sup> and CD7<sup>+</sup> subsets of CD8<sup>+</sup> CD45RO<sup>+</sup> T cells were incubated with or without swainsonine for 24 hrs and then activated for various time intervals (1 min until 20 min) on coverslips coated with the agonistic anti-CD3 mAb plus anti-CD28 mAb. T cell stimulation was stopped with paraformaldehyde and cells were stained with anti-TCR-alpha/betamAb (blue), anti-CD7 mAb (red) and anti-galectin-3 mAb (yellow) together with CtxB (green) for lipid rafts staining. Immunofluorescence was visualized by a LSM and quantified as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030713#s4" target="_blank">Materials and Methods</a>. T cell staining after 5 min stimulation of one representative experiment out of five is exemplarily shown. (C) CD7<sup>−</sup> and CD7<sup>+</sup> subsets of CD8<sup>+</sup> CD45RO<sup>+</sup> T cells were incubated with or without swainsonine and activated as described in (B). Frequencies of cells producing IFN-gamma and showing degranulation indicated by CD107a was monitored by flow cytometry. Data in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030713#pone-0030713-g003" target="_blank">Fig. 3</a> represent the mean ± SEM of five experiments and were compared using a paired t-test. * p<0.05. FU: fluorescence unit; MFI: mean fluorescence intensity.</p

    TCR synapse formation is impaired in late-stage T cells.

    No full text
    <p>CD8<sup>+</sup> CD45RO<sup>+</sup> T lymphocytes were incubated on coverslips coated with the agonistic anti-CD3 mAb (UCHT-1) plus anti-CD28 mAb (CD28.2) or with the anti-CD2 mAbs (L303.1) and (L304.1) plus the anti-CD28 mAb (CD28.2). Cells were activated for various time intervals (1 min until 20 min), incubation was stopped by addition of paraformaldehyde, and cells were stained with TCR-alpha/betamAb (green) plus CD7 mAb (blue) or alternatively with CD2 mAb (blue) plus CD7 mAb (green) together with cholera toxin B (CtxB) (white) for lipid raft staining. Cells were analyzed on a LSM 510 with 630× microscope magnification. A minimum of 100 cells for each data point was recorded. Representative images after 0 min, 1 min, 5 min, 10 min and 20 min stimulation out of five independent experiments are shown. Synapse formation intensity (CTxB intensity) was quantified as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030713#s4" target="_blank">Materials and Methods</a>. A minimum of 100 cells of each cell population on each coverslip was recorded. Data represent mean scores from five experiments ± standard error of the mean and were compared using a paired t-test. * p<0.05. FU: fluorescence unit.</p

    Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer’s Disease

    No full text
    Background: Alzheimer’s disease (AD) is a neurodegenerative disease that remains uncured. Its pathogenesis is characterized by the formation of β-amyloid (Aβ) plaques. The use of antigen-specific regulatory T cells (Tregs) through adoptive transfer has shown promise for the treatment of many inflammatory diseases, although the effectiveness of polyspecific Tregs is limited. Obtaining a sufficient number of antigen-specific Tregs from patients remains challenging. Aims and Methods: To address this problem, we used an antibody-like single-chain variable fragment from a phage library and subsequently generated a chimeric antigen receptor (CAR) targeting β-amyloid. Results: The β-amyloid-specific CARs obtained were stimulated by both recombinant and membrane-bound Aβ isolated from the murine brain. The generated CAR-Tregs showed a normal Treg phenotype, were antigen-specific activatable, and had suppressive capacity. Conclusion: This study highlights the potential of CAR technology to generate antigen-specific Tregs and presents novel approaches for developing functional CARs
    corecore