74 research outputs found

    Escherichia coli EHEC Germany outbreak preliminary functional annotation using BG7 system

    Get PDF
    We have annotated the European outbreak E. coli EHEC genome sequenced by BGI (6-2-2011) and assembled with MIRA by Nick Loman (6-2-2011 ). Our system BG7, Bacterial Genome annotation of Era7 Bioinformatics, predicts ORFs and annotates them based on fragments of similarity with Uniprot proteins. We have predicted 6327 genes, 6156 encoding proteins y 171 corresponding to ribosomal and tRNA. Based on the preliminary results of our semi-automated method of annotation we have selected some predicted proteins with potential implications in pathogenicity and virulence.
There are 33 predicted genes annotated as toxins and we have found three putative hemolysins: Hemolysin E, a putative hemolysin expression modulating protein and a channel protein, hemolysin III family. We have found 31 predicted genes that could be related to specific antibiotic resistance: beta-lactamic, aminoglycoside, macrolide, polymyxin, tetracycline, fosfomycin and deoxycholate, novobiocin, chloramphenicol, bicyclomycin, norfloxacin and enoxacin and 6-mercaptopurine. This strain is rich in adhesion, secretion systems, pathogenicity and virulence related proteins. It seems to have a restriction-modification system, many proteins involved in Fe transport and utilization (siderophores as aerobactin and enterobactin), lysozyme, one inhibitor of pancreatic serine proteases, proteins involved in anaerobic respiration, antimicrobial peptides, and proteins involved in quorum sensing and biofilm formation that could confer competitive advantage to this strain

    Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements

    Get PDF
    BACKGROUND: Mobile elements are involved in genomic rearrangements and virulence acquisition, and hence, are important elements in bacterial genome evolution. The insertion of some specific Insertion Sequences had been associated with repetitive extragenic palindromic (REP) elements. Considering that there are a sufficient number of available genomes with described REPs, and exploiting the advantage of the traceability of transposition events in genomes, we decided to exhaustively analyze the relationship between REP sequences and mobile elements. RESULTS: This global multigenome study highlights the importance of repetitive extragenic palindromic elements as target sequences for transposases. The study is based on the analysis of the DNA regions surrounding the 981 instances of Insertion Sequence elements with respect to the positioning of REP sequences in the 19 available annotated microbial genomes corresponding to species of bacteria with reported REP sequences. This analysis has allowed the detection of the specific insertion into REP sequences for ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01, ISPpu9 and ISPpu10 in P. putida KT2440, and ISRm22 and ISRm19 in Sinorhizobium meliloti 1021 genome. Preference for insertion in extragenic spaces with REP sequences has also been detected for ISPsy7 in P. syringae DC3000, ISRm5 in S. meliloti and ISNm1106 in Neisseria meningitidis MC58 and Z2491 genomes. Probably, the association with REP elements that we have detected analyzing genomes is only the tip of the iceberg, and this association could be even more frequent in natural isolates. CONCLUSION: Our findings characterize REP elements as hot spots for transposition and reinforce the relationship between REP sequences and genomic plasticity mediated by mobile elements. In addition, this study defines a subset of REP-recognizer transposases with high target selectivity that can be useful in the development of new tools for genome manipulation

    ExtraTrain: a database of Extragenic regions and Transcriptional information in prokaryotic organisms

    Get PDF
    BACKGROUND: Transcriptional regulation processes are the principal mechanisms of adaptation in prokaryotes. In these processes, the regulatory proteins and the regulatory DNA signals located in extragenic regions are the key elements involved. As all extragenic spaces are putative regulatory regions, ExtraTrain covers all extragenic regions of available genomes and regulatory proteins from bacteria and archaea included in the UniProt database. DESCRIPTION: ExtraTrain provides integrated and easily manageable information for 679816 extragenic regions and for the genes delimiting each of them. In addition ExtraTrain supplies a tool to explore extragenic regions, named Palinsight, oriented to detect and search palindromic patterns. This interactive visual tool is totally integrated in the database, allowing the search for regulatory signals in user defined sets of extragenic regions. The 26046 regulatory proteins included in ExtraTrain belong to the families AraC/XylS, ArsR, AsnC, Cold shock domain, CRP-FNR, DeoR, GntR, IclR, LacI, LuxR, LysR, MarR, MerR, NtrC/Fis, OmpR and TetR. The database follows the InterPro criteria to define these families. The information about regulators includes manually curated sets of references specifically associated to regulator entries. In order to achieve a sustainable and maintainable knowledge database ExtraTrain is a platform open to the contribution of knowledge by the scientific community providing a system for the incorporation of textual knowledge. CONCLUSION: ExtraTrain is a new database for exploring Extragenic regions and Transcriptional information in bacteria and archaea. ExtraTrain database is available at

    Genomic Resources Notes accepted 1 April 2014 - 31 May 2014

    Get PDF
    Genomic Resources Development Consortium.This article documents the public availability of a global transcriptome comparison between Lyme disease tick vectors, Ixodes scapularis and Ixodes ricinus.Peer Reviewe

    A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae

    Get PDF
    [Background]: Dermacentor reticulatus (Fabricius, 1794) is distributed in Europe and Asia where it infests and transmits disease-causing pathogens to humans, pets and other domestic and wild animals. However, despite its role as a vector of emerging or re-emerging diseases, very little information is available on the genome, transcriptome and proteome of D. reticulatus. Tick larvae are the first developmental stage to infest hosts, acquire infection and transmit pathogens that are transovarially transmitted and are exposed to extremely stressing conditions. In this study, we used a systems biology approach to get an insight into the mechanisms active in D. reticulatus unfed larvae, with special emphasis on stress response. [Principal Findings]: The results support the use of paired end RNA sequencing and proteomics informed by transcriptomics (PIT) for the analysis of transcriptomics and proteomics data, particularly for organisms such as D. reticulatus with little sequence information available. The results showed that metabolic and cellular processes involved in protein synthesis were the most active in D. reticulatus unfed larvae, suggesting that ticks are very active during this life stage. The stress response was activated in D. reticulatus unfed larvae and a Rickettsia sp. similar to R. raoultii was identified in these ticks. [Significance]: The activation of stress responses in D. reticulatus unfed larvae likely counteracts the negative effect of temperature and other stress conditions such as Rickettsia infection and favors tick adaptation to environmental conditions to increase tick survival. These results show mechanisms that have evolved in D. reticulatus ticks to survive under stress conditions and suggest that these mechanisms are conserved across hard tick species. Targeting some of these proteins by vaccination may increase tick susceptibility to natural stress conditions, which in turn reduce tick survival and reproduction, thus reducing tick populations and vector capacity for tick-borne pathogens.This research was supported by grants BFU2011-23896 and the EU FP7 ANTIGONE project number 278976. M. Popara is an Early Stage Researcher supported by the POSTICK ITN (Post-graduate training network for capacity building to control ticks and tick-borne diseases) within the FP7- PEOPLE – ITN programme (EU Grant No. 238511). N. Ayllón and R.C. Galindo were funded by MEC, Spain.Peer Reviewe

    Complete Genome Sequences of Field Isolates of Mycobacterium bovis and Mycobacterium caprae

    Get PDF
    Here we report the complete genome sequences of field isolates of Mycobacterium bovis and the related mycobacterial species, Mycobacterium caprae. The genomes of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different virulence, prevalence, and host distribution phenotypes were sequenced

    Expression of early growth response gene-2 and regulated cytokines correlate with recovery from Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy. The goal of this research was the identification of biomarkers associated with recovery from GBS. In this study, we compared the transcriptome of PBMCs from a GBS patient and her healthy twin to discover possible correlates of disease progression and recovery. The study was then extended using GBS and spinal cord injury unrelated patients with similar medications and healthy individuals. The early growth response gene-2 (EGR2) was upregulated in GBS patients during disease recovery. The results provided evidence for the implication of EGR2 in GBS and suggested a role for EGR2 in the regulation of IL-17, IL-22, IL-28A, and TNF-ß cytokines in GBS patients. These results identified biomarkers associated with GBS recovery and suggested that EGR2 overexpression has a pivotal role in the downregulation of cytokines implicated in the pathophysiology of this acute neuropathy.This work was supported partially by European Union Framework Program 7 Antigone Project 278976. L.M.-H. was supported by a fellowship from the University of Castilla La Mancha (UCLM). M.V. was supported by the research plan of the UCLM.Peer Reviewe

    Epitopes for Multivalent Vaccines Against Listeria, Mycobacterium and Streptococcus spp: A Novel Role for Glyceraldehyde-3-Phosphate Dehydrogenase

    Get PDF
    The glycolytic enzyme and bacterial virulence factor of Listeria monocytogenes, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Lmo2459), ADP-ribosylated the small GTPase, Rab5a, and blocked phagosome maturation. This inhibitory activity localized within the NAD binding domain of GAPDH at the N-terminal 1?22 peptides, also conferred listeriosis protection when used in dendritic cell-based vaccines. In this study, we explore GAPDH of Listeria, Mycobacterium, and Streptococcus spp. taxonomic groups to search for epitopes that confer broad protection against pathogenic strains of these bacteria. GAPDH multivalent epitopes are selected if they induce inhibitory actions and wide-ranging immune responses. Proteomic isolation of GAPDH from dendritic cells infected with Listeria, Mycobacterium, or Streptococcus confirmed similar enzymatic, Rab5a inhibitory and immune stimulation abilities. We identified by bioinformatics and functional analyses GAPDH N-terminal 1?22 peptides from Listeria, Mycobacterium, and Streptococcus that shared 95% sequence homology, enzymatic activity, and B and T cell immune domains. Sera obtained from patients or mice infected with hypervirulent pathogenic Listeria, Mycobacterium, or Streptococcus presented high levels of anti-GAPDH 1?22 antibodies and Th2 cytokines. Monocyte derived dendritic cells from healthy donors loaded with GAPDH 1?22 peptides from Listeria, Mycobacterium, or Streptococcus showed activation patterns that correspond to cross-immunity abilities. In summary, GAPDH 1?22 peptides appeared as putative candidates to include in multivalent dendritic based vaccine platforms for Listeria, Mycobacterium, or Streptococcus

    Bloody coli: a gene cocktail in Escherichia coli O104:H4.

    Get PDF
    A recent study published in mBio [Y. H. Grad et al., mBio 4(1):e00452-12, 2013] indicates that a rapid introgressive evolution has occurred in Escherichia coli O104:H4 by sequential acquisition of foreign genetic material involving pathogenicity traits. O104 genetic promiscuity cannot be readily explained by high population sizes. However, extensive interactions leading to cumulative assemblies of pathogenicity genes might be assured by small K-strategist populations exploiting particular intestinal niches. Next-generation sequencing technologies will be critical to detect particular "gene cocktails" as potentially pathogenic ensembles and to predict the risk of future outbreaks
    corecore