104 research outputs found

    Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats

    Get PDF
    Epidemiological studies have demonstrated a comorbidity of smoking with depression and anxiety, particularly during adolescence. However, few animal studies have considered possible synergistic interactions between nicotine and other tobacco smoke constituents, such as monoamine oxidase (MAO) inhibitors, in the regulation of mood. The aim of the study was to test the hypothesis that nicotine combined with the irreversible MAO inhibitor, tranylcypromine, will differentially affect depression- and anxiety-related behaviors in adolescent and adult rats. Nicotine (0, 0.05, 0.2 mg/kg, s.c.) and tranylcypromine (3 mg/kg, i.p.) were tested separately, or together, on male rats aged postnatal days 30 and 68, in three mood-related behavioral tests: forced swim test (FST), elevated plus maze (EPM), and open field. Nicotine (0.2 mg/kg) in adults significantly decreased floating time in the FST and increased time spent in the open arm of the EPM, with no change in locomotor activity. Tranylcypromine pretreatment combined with nicotine (0.2 mg/kg) significantly increased locomotor activity and time spent in the center of the open field. Whereas nicotine alone had no significant effect on adolescents, it significantly increased locomotor activity and decreased floating time in the FST when combined with tranylcypromine pretreatment. There is an age-dependent effect of nicotine, alone and in combination with MAO inhibition, on mood-related behaviors. Whereas nicotine alone induces mood improvement in adults, it has no effect on adolescents. Nicotine combined with tranylcypromine has unique, age-dependent effects. Thus, experimental studies of smoking should consider both age and other tobacco constituents, such as MAO inhibitors, as critical factors

    Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice

    Get PDF
    BACKGROUND: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. METHODS: For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. RESULTS: We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. CONCLUSIONS: Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers.Peer Reviewe

    Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms.

    Get PDF
    Abstract Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse. Copyright © 2015. Published by Elsevier Ltd.This work was supported by grants from the Spanish Ministerios de EconomĂ­a y Competitividad (SAF2013-48532-R) and of Sanidad PolĂ­tica Social e Igualdad(PNSD #2012/071, and ISCIII, CIBERNED CB06/05/0055) and Comunidad de Madrid ref. S2011/BMD-2336 to RM and by funds from the Regione Autonoma della Sardegna (Legge Regionale 7 Agosto 2007, N.7, annualitĂ  2008 and 2010) to MM and by funds from to Sardinian Regional Government for financial support (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007–2013 – Axis IV Human Resources, Objective l.3, Line of Activity l.3.1 “Avviso di chiamata per il finanziamento di Assegni di Ricerca”) to. NS.Peer Reviewe
    • 

    corecore