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Abstract

International benchmarking competitions have become
fundamental for the comparative performance assessment
of image analysis methods. However, little attention has
been given to investigating what can be learnt from these
competitions. Do they really generate scientific progress?
What are common and successful participation strategies?
What makes a solution superior to a competing method?
To address this gap in the literature, we performed a multi-
center study with all 80 competitions that were conducted in
the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical
analyses performed based on comprehensive descriptions of
the submitted algorithms linked to their rank as well as the
underlying participation strategies revealed common char-
acteristics of winning solutions. These typically include
the use of multi-task learning (63%) and/or multi-stage

pipelines (61%), and a focus on augmentation (100%), im-
age preprocessing (97%), data curation (79%), and post-
processing (66%). The “typical” lead of a winning team
is a computer scientist with a doctoral degree, five years of
experience in biomedical image analysis, and four years of
experience in deep learning. Two core general development
strategies stood out for highly-ranked teams: the reflection
of the metrics in the method design and the focus on analyz-
ing and handling failure cases. According to the organizers,
43% of the winning algorithms exceeded the state of the art
but only 11% completely solved the respective domain prob-
lem. The insights of our study could help researchers (1)
improve algorithm development strategies when approach-
ing new problems, and (2) focus on open research questions
revealed by this work.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Overview of the IEEE ISBI 2021 and MICCAI 2021
challenges. Under the umbrella of 35 challenges (each represented
by a teaser image and acronym), a total of 80 competitions with
dedicated leaderboards were organized, as detailed in Suppl. A-C.
We used data from participants, organizers, and winners to ad-
dress the key research questions of this contribution: (RQ1) What
is common practice in challenge participation?, (RQ2) Do cur-
rent competitions generate scientific progress?, and (RQ3) Which
strategies characterize challenge winners?

1. Introduction

Validation of biomedical image analysis algorithms is
typically conducted through so-called challenges – large
international benchmarking competitions that compare al-
gorithm performance on datasets addressing specific prob-
lems. Recent years have not only seen an increase in the
complexity of the machine learning (ML) models used to
solve the tasks, but also a substantial increase in the sci-
entific impact of challenges, with results often being pub-
lished in prestigious journals (e.g., [9, 28, 34, 41, 46]), and
winners receiving tremendous attention in terms of cita-
tions and (sometimes) high monetary compensation [23].
However, despite this impact, little effort has so far been in-

vested in investigating what can be learnt from a challenge.
Firstly, we identified a notable gap in literature regarding in-
sights into current common practices in challenges as well
as studies that critically analyze whether challenges actually
generate scientific progress. Secondly, while recent work
has addressed the problem of deriving meaningful conclu-
sions from challenges [29, 49], it still remains largely un-
clear what makes winners the best and hence what consti-
tutes a good strategy for approaching a new challenge or
problem. The specific questions are manifold, e.g., Which
specific training paradigms are used in current winning so-
lutions?, What are the most successful strategies for achiev-
ing generalization?, Is it beneficial to involve domain ex-
perts or to work in a large team?. While ablation studies on
the effects of ML model component removal could be used
to address some questions, they suffer from the major draw-
back of only providing insights into submitted solutions, but
not into underlying strategies. Furthermore, they typically
only allow for investigating few aspects of a solution, and
come at the cost of a substantial carbon footprint.

To overcome these issues, we chose an approach that al-
lowed us to systematically assess all of the aforementioned
questions related to biomedical image analysis competitions
within one cohesive study. To this end, members of the
Helmholtz Imaging Incubator (HI) and of the Medical Im-
age Computing and Computer Assisted Intervention (MIC-
CAI) Special Interest Group on biomedical image analy-
sis challenges designed a series of comprehensive interna-
tional surveys that were issued to participants, organizers,
and winners of competitions conducted within the IEEE In-
ternational Symposium on Biomedical Imaging (ISBI) 2021
and the International Conference on MICCAI 2021. By col-
laborating with the organizers of all 80 competitions (100%,
see overview in Suppl. A-C), we were able to link algo-
rithmic design decisions and challenge participation strate-
gies to the outcome captured in rankings. Based on the
study data, we explicitly addressed three research ques-
tions: (RQ1) What is common practice in challenge partici-
pation?, (RQ2) Do current competitions generate scientific
progress?, and (RQ3) Which strategies characterize chal-
lenge winners?

2. Methods
According to the Biomedical Image Analysis Chal-

lengeS (BIAS) Enhancing the QUAlity and Transparency
Of health Research (EQUATOR) guideline on biomedical
challenges [31], a biomedical image analysis challenge is
defined as an “[...] open competition on a specific scien-
tific problem in the field of biomedical image analysis. A
challenge may encompass multiple competitions related to
multiple tasks, whose participating teams may differ and
for which separate rankings/leaderboards/results are gener-
ated.”. As the term challenge task is uncommon in the ML
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community, we will use the term competition instead. The
term challenge will be reserved for the collection of tasks
that are performed under the umbrella of one dedicated or-
ganization, represented by an acronym (Fig. 1). For our
analyses, we targeted three main groups that are relevant
in the context of challenges, namely (1) challenge partici-
pants, (2) challenge organizers, and (3) challenge winners.
The following sections present the methodology developed
to address the corresponding research questions RQ1-RQ3.

2.1. RQ1: What is common practice in challenge
participation?

To investigate current common practice in biomedical
image analysis challenge participation, we designed a sur-
vey that was addressed to challenge participants and struc-
tured in five parts covering: (1) general information on
the team and the tackled task(s), (2) information on exper-
tise and environment, (3) strategy for the challenge, (4) al-
gorithm characteristics, and (5) miscellaneous information
(details provided in Sec. 3).

The organizers of all IEEE ISBI 2021 challenges (30
competitions across 6 challenges [1,2,12,35,40,42]), and all
MICCAI 2021 challenges (50 competitions across 29 chal-
lenges [3–6, 8, 10, 13, 14, 16, 18, 19, 21, 22, 26, 27, 32, 33,
36, 37, 43, 44, 48, 50, 51]) were invited to participate in the
initiative and to bring us into contact with participants (if
allowed by the challenge privacy policy) or distribute the
survey link to them. We created an individual survey web-
site for each challenge to be able to accommodate the indi-
vidual challenge submission deadline. To avoid bias in sur-
vey responses, participants were asked to complete the sur-
vey before knowing their position in the final ranking. Out
of a maximum of 168 questions, the survey only showed
questions that were relevant to the specific situation. The
responses and feedback from the IEEE ISBI 2021 respon-
dents were used to refine the survey for MICCAI 2021, and
are thus not included in the results presented in Sec. 3.1.

Where organizers were allowed to share the contact de-
tails of the participants (20 challenges), the survey was con-
ducted in closed-access mode, meaning that the participants
received individual links to the survey and, where necessary,
reminders. Fifteen surveys were conducted in open-access
mode, meaning that the organizers were tasked with shar-
ing the link to the respective survey and sending reminders.
In these cases, we were not informed about the number of
challenge participants and could not relate the number of
responses to the total number.

2.2. RQ2: Do current competitions generate scien-
tific progress?

The focus of the organizer survey was on the findings of
the respective competition, particularly regarding whether
scientific progress was made and, if yes, in which areas it

was achieved and which open questions remain. To bet-
ter put the respective competition into context, we also
acquired general information on the associated competi-
tion(s).

2.3. RQ3: Which strategies characterize challenge
winners?

The complexity of state-of-the-art neural network-based
approaches, involving numerous and interdependent design
parameters, comes with the risk of attributing the success in
a competition to the wrong component of a system. To ap-
proach the question Why is the winner the best?, we linked
the survey results of Sec. 2.1 to the final outcome of the
competition and subsequently applied mixed model analy-
ses. Given the large number of parameters relative to the
number of competitions, we were aware that differences in
parameters might not achieve statistical significance. In a
second step, we therefore explicitly asked challenge win-
ners for successful algorithm design choices and strategies
in an additional survey.

Mixed model analysis To compensate for the hierarchi-
cal data structure resulting from clusters corresponding to
specific competitions, a logistic mixed model was used. In
a first step, a univariable analysis was performed, i.e., the
effect of each variable on the ranking was investigated sep-
arately. To further account for potential interdependencies
between variables, two multivariable analyses were added.
In the first analysis, the goal was to investigate the strate-
gies influencing the probability of being the winner, while
the second analysis focused on evaluating the strategies in-
fluencing the probability of being ranked among the best
30%. For both analyses, a logistic mixed model was im-
plemented. The winning strategies were included as fixed
effects while the challenge identifier was included as a ran-
dom effect. Additionally, some of the strategies were al-
lowed to vary across challenges, specifically the total train-
ing time in computation hours, time spent on analyzing data
and annotations, and time spent on analysis of failure cases.
Variables with highly varying magnitudes were scaled be-
fore fitting the model. Statistical analysis was done in R
Statistical Software [38] (v4.0.3, package: lme4 [7]).

Survey on winning strategies The survey of competi-
tion winners consisted of three main parts targeting the de-
sign decisions related to the winning submission, general
recommended strategies for winning a competition, and the
profile of a winner, respectively.

In the first part, we asked the winners about the im-
portance of various design decisions for their submitted
method. These comprised design decisions related to (1) the
training paradigm, such as the usage of multi-task learning
or semi-supervised learning, (2) network details, such as the
choice of loss function(s), (3) model initialization, specifi-
cally pretraining, (4) data usage, covering aspects like data
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curation, augmentation, data splitting, and sampling, (5)
hyperparameters, (6) ensembling, (7) postprocessing, and
(8) metrics (see Fig. 3). For each of these design deci-
sions, winners specified their method (e.g., whether they
performed pretraining and, if so, based on which data) and
rated the importance of this design choice for winning the
challenge. We further explicitly asked what distinguished
the winning solution from competing solutions and what
were key factors for success.

The second part of the survey investigated general suc-
cessful strategies (independent of the specific challenge).
To this end, several authors of this paper who had al-
ready won multiple challenges compiled the list of strate-
gies (Fig. 4). The winners were asked to rate the importance
of each strategy and further complement the list.

Finally, the third part of the survey covered questions on
the profile of a challenge winner (Fig. 2). This was partic-
ularly relevant for those winners that had not taken part in
the original survey of Sec. 2.1.

3. Results
Based on the positive responses of all organizers from

all IEEE ISBI 2021 (n = 30) and MICCAI 2021 (n = 50)
competitions, a total of 80 competitions conducted across
35 challenges were included in this study (Fig. 1). These
covered a wide range of problems related to semantic seg-
mentation, instance segmentation, image-level classifica-
tion, tracking, object detection, registration, and pipeline
evaluation.

3.1. Common practice in challenge participation

A median (min/max) of 72% (11%/100%) of the chal-
lenge participants took part in the survey, according to the
closed-access surveys. Overall, we received 292 completed
survey forms, of which 249 met our inclusion criteria (i.e.,
second version of the survey refined for MICCAI 2021,
survey completed by a lead developer, no duplicate re-
sponses from the same team). Detailed responses to all as-
pects of the survey (including interquartile ranges (IQR) and
min/max values of all parameters) are provided in a white
paper [15]. This section summarizes a selection of answers.
The profile of a winner is depicted in Suppl. D.

Infrastructure and strategies Knowledge exchange
was the most important incentive for participation (men-
tioned by 70%; respondents were allowed to pick multi-
ple answers), followed by the possibility to compare their
own method to others (65%), having access to data (52%),
being part of an upcoming challenge publication (50%),
and winning a challenge (42%). The awards/prize money
was important to only 16% of the respondents. Regard-
ing the computing infrastructure, only 25% of all respon-
dents thought that their infrastructure was a bottleneck. The
vast majority of respondents used a Graphics Processing

Unit (GPU) cluster. The total training time of all models
trained during method development including failure mod-
els was estimated to be a median of 267 GPU hours, while
the training time of the final submission was estimated to be
a median of 24 GPU hours. The most popular frameworks
were PyTorch for method implementation (76%), NumPy
for analyzing data (37%), and NumPy for analyzing anno-
tations/reference data (27%).

The most common approach to development (42%)
consisted of going through related literature and building
upon/modifying existing work. The majority (51%) esti-
mated the edited lines of code of the final solution to be
in the order of magnitude of 103. A median of 80 work-
ing hours was spent on method development in total. The
respondents reported more human-driven decisions (me-
dian of 60%), e.g., parameter setting based on expertise,
than empirical decisions (median of 40%), e.g., automated
hyperparameter tuning via grid search. 94% of the respon-
dents used a deep learning-based approach. For those ap-
proaches, most time (up to three picks allowed) was spent
on selecting one or multiple existing architectures that best
matched the task (45%), configuring the data augmenta-
tion (33%), configuring the template architecture (e.g., How
deep? How many stages/pooling layers?) (28%), exploring
existing loss functions (25%), and ensembling (22%).

The survey revealed that almost one third of the respon-
dents did not have enough time for development. A major-
ity thereof (65%) felt that more time in the scale of weeks
would have been beneficial (months: 18%, days: 14%).

Algorithm characteristics Among the deep learning-
based approaches, only 9% actively used additional data,
i.e., data not provided for the respective challenge, in their
final solution (note that this does not include the usage of
already pretrained models). One reason may be that some
challenges (24%) explicitly do not allow the usage of ex-
ternal data. Of those that did leverage external data, the
majority used public biomedical data for the same type of
task (40%), private biomedical data for the same type of
task (25%), or public biomedical data for a different type
of task (15%). Non-biomedical data was only used in 5%
of the cases. If additional data was used, it was used for
pretraining (55%) and/or co-training (50%).

Data augmentation was applied by 85% of the respon-
dents. The most common augmentations were random
horizontal flip (77%), rotation (74%), random vertical flip
(62%), contrast (49%), scale (48%), crop (44%), resize crop
(35%), noise (34%), elastic deformation (26%), color jit-
ter (19%), and shearing (15%). 43% of the respondents re-
ported that the data samples were too large to be processed
at once (e.g., due to GPU memory constraints). This is-
sue was mainly solved by patch-based training (cropping)
(69%), downsampling to a lower resolution (37%), and/or
solving 3D analysis tasks as a series of 2D analysis tasks
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(per z-slice approach) with postprocessing (18%). The
most common loss functions were Cross-Entropy (CE) Loss
(39%), combined CE and Dice Loss (32%), and Dice Loss
(26%). 29% of the respondents used early stopping, 12%
used warmup. Internal evaluation via a single train:val(:test)
split was performed by more than half of the respondents
(52%). K-fold cross-validation on the training set was per-
formed by 37%. 6% did not perform any internal evalua-
tion. 48% of the respondents applied postprocessing steps.

The final solution of 50% of the respondents was a single
model trained on all available data. An ensemble of multi-
ple identical models, each trained on the full training set but
with a different initialization (random seed), was proposed
by 6%. 21% proposed an ensemble of multiple identical
models, each trained on a randomly drawn subset of the
training set (regardless of whether the same seed was used
or not). 9% reported having ensembled multiple different
models and trained each on the whole training set (differ-
ent seeds). 8% ensembled multiple different models, each
trained on a randomly drawn subset of the training set (re-
gardless of whether the same seed was used or not). If mul-
tiple models were used, the final solution was composed of
a median of 5 models.

3.2. Key insights related to scientific progress gen-
erated by challenges

According to the responses of challenge organiz-
ers (n = 54), 43% of the winning algorithms exceeded the
state of the art (Fig. 2). While substantial (47%) or mi-
nor (32%) progress was made in most competitions, the un-
derlying problem was regarded as solved in only 11% of
the competitions. Most progress was seen in new architec-
tures/combination of architectures (32%), the phrasing of
the optimization problem (e.g., new losses) (17%,) and new
augmentation strategies (14%). Failure cases were mainly
attributed to specific imaging conditions (e.g., image blur)
(27%), generalization issues (23%), and specific classes that
perform particularly poorly (19%).

According to the responses from several organizers, the
trend of simple algorithms (e.g., U-Net [17]/nnU-Net [24])
outperforming complex ones continued. As a prominent
feature in 2021, many competitions provided additional in-
formation that is not usually available, such as the identi-
fier of the hospital for domain generalization, multiple ex-
pert segmentations to represent label uncertainty, or k-space
data in reconstruction problems. However, the participants
were not able to leverage the additional data for better per-
formance. The same holds true for temporal data in video
analysis, although organizers hypothesize that frame-based
analysis is not sufficient.

Several organizers also reported a lack of heterogeneity
in methods. Often, submitted methods performed similarly
(e.g., differing only in the fourth decimal digit in normal-

Figure 2. Key insights provided by the organizers of IEEE ISBI
2021 and MICCAI 2021 challenges.

ized scores). On a positive note, some competitions that had
been run for multiple years observed a drastic improvement
compared to previous years, sometimes even surpassing hu-
man performance. Regarding computational aspects, in one
case the winning method surpassed the existing state-of-the-
art method, achieving a 19 times faster inference speed and
reduction of the GPU memory consumption by 60% while
yielding comparable accuracy.

According to our study, generalization remains a major
issue. One challenge, which mimicked “in-the-wild” de-
ployment, found that models failed to generalize in 3 out
of 21 testing institutions. Similarly, performance in rare
classes was reported as a core issue in several competitions.
This is a problem of high clinical relevance as diseases often
correspond to a rare class. A related problem is the fact that
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the detection of multiple conditions in a multi-label setting
still remains challenging. Finally, some organizers reported
the failure of metrics to reflect the biomedical domain inter-
est. Along these lines, pixel-level performance was some-
times reported to be substantial while instance-/case-level
performance, which is typically biomedically more rele-
vant, was not improved substantially.

Cheating was observed in 4% of the cases. It was related
to an excessive number of submissions of similar methods
with different user accounts or the attempt to retrieve the
test set from the submission platform. In these cases, par-
ticipants were excluded from the competition, the rankings
and/or the publication.

3.3. Key insights related to winning strategies

When comparing winners to other participants, several
differences stood out. Firstly, winners were more deter-
mined to win a challenge (64% vs. 40%). The majority
of winning lead developers have a doctorate degree (41%)
while the majority of non-winning lead developers have a
master’s degree (47%) as their highest degree. Further-
more, while only 66% of other participants felt that there
was enough development time, 86% of the winners agreed
with this statement. Winners spent 120 hours (e.g., on
method development, analyzing data and annotations) be-
fore deciding to submit, compared to 56 hours for other
participants, and decided to submit a week earlier (3 vs. 2
weeks prior to submission). Notably, winners spent twice
as much time on failure analysis (10% of median working
hours dedicated to method development vs. 5%). Compared
to non-winners, winners used ensembling based on random
seeds, data splits, and heterogeneous models (see Fig. 3(f))
5.6 times, 1.7 times, and 2.5 times as much.

According to univariable mixed model analysis, eight
parameters were found to provide statistically significant
differences between winners and non-winners (p < 0.05):
(1) Number of team members who were develop-
ers/engineers, (2) time invested before planning to submit
results, (3) time spent in data preprocessing/augmentation,
(4) use of professionally managed GPU cluster, (5) ap-
proach used for method development, (6) architecture type,
(7) taking metrics used to evaluate the challenge into ac-
count while searching for hyperparameters, and (8) aug-
mentations used. Note, however, that when multiple inde-
pendent tests are performed, 5% can be expected to be iden-
tified as significant purely by chance when testing at 5%
significance level. Correcting for this so-called multiplicity
of testing, we did not obtain statistically significant differ-
ences. Multivariable model analysis based on a selection of
variables identified by image analysis experts revealed the
willingness to win the challenge as the only parameter with
p < 0.05 when comparing winners to non-winners (64%
vs. 40%). Analogously, the parameter of taking metrics

used to evaluate the challenge into account while searching
for hyperparameters was identified in the best 30% vs. the
rest analysis. It is worth mentioning in this context that de-
spite the high response rate of 72%, the number of winners
covered by the survey presented in Sec. 2.1 was only 22.
The resulting low power of identifying important contribu-
tors to winning challenges may well be the reason for the
absence of statistical significance. We therefore addition-
ally asked competition winners after the results announce-
ment for key design decisions and strategies. The responses
(n = 38) cover 67% and 62% of the IEEE ISBI 2021 and
MICCAI 2021 challenges respectively, and are summarized
in Fig. 3 and Fig. 4.

As detailed in Fig. 3, the most applied training pipelines
were multi-task designs (63%) and multi-stage pipelines
(61%). If multi-stage pipelines were applied, the impor-
tance of this strategy for winning the challenge was rated
crucial. Pretraining was mainly performed in a supervised
fashion using in-domain data (55%) or generic data (e.g.,
ImageNet) (61%). The usage of in-domain data, how-
ever, was found to be much more important. As men-
tioned above, it should be noted that many competitions
do not allow for the usage of external data (24% accord-
ing to the survey presented in Sec. 2.2). The most com-
monly applied design decisions related to data usage were
preprocessing (97%), augmentation (100%), data splitting
(beyond the splits provided by the competition, e.g., for
cross-validation) (89%), data curation (e.g., cleaning of an-
notations) (79%), and data sampling (58%). One aspect that
stood out when asking winners for key factors for success
(free text) was the setting up of a good internal validation
strategy, including the careful selection of a baseline model
and appropriate validation tests.

With respect to general strategies (Fig. 4), the strategies
of analyzing and handling failure cases, knowing the state
of the art, and reflecting the metrics in the method design
were rated most highly. Further recommended strategies
in free-text answers were heterogeneous and comprise (1)
inclusion of non-deep learning approaches in a model en-
semble, (2) explicit determination of a time management
strategy, (3) test-time augmentation, and (4) preferring ma-
tured architectures over brand-new hyped machine learning
methods.

4. Discussion
The presented study represents, to the best of our knowl-

edge, the first systematic and large-scale examination of
biomedical image analysis competitions with a focus on
what the scientific community can learn from them. Based
on comprehensive surveys and statistical analyses for a total
of 80 competitions within the scope of two major confer-
ences in the field, it provides unprecedented insights into
common practice among challenge participants, progress
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Figure 3. Importance of design decisions for the neural network-based winning submission of the respective IEEE ISBI 2021 and MICCAI
2021 competition rated by the (team) lead and ordered by percentage of highest vote (crucially important: dark blue). Voting was only
conducted among those who used the respective design. “Applied by” indicates the percentage of respondents using the respective design.

generated by competitions, open issues, as well as key win-
ning strategies.

A new insight with respect to common participation
practice (RQ1) was that knowledge exchange is the pri-
mary participation incentive. This will most likely differ on
platforms like Kaggle, in which prize money and achieving
a high rank are expected to be substantially more impor-
tant [45]. To our surprise, only a small portion of partici-
pants perceived the limiting computing power as a bottle-
neck. Similarly surprisingly, k-fold cross-validation on the
training set as well as ensembling was only performed by a
minority of participants.

The competitions clearly led to substantial scientific
progress according to the organizers (RQ2). Notably, how-
ever, only a small fraction of image analysis problems ad-
dressed by current competitions can be regarded as solved
(Suppl. E). Open research questions identified as part of this
work include: (1) How can we better integrate meta infor-

mation in neural network solutions?, (2) How can we ef-
fectively leverage temporal information in biomedical video
analysis?, (3) How can we achieve generalization across
devices, protocols, and sites?, (4) How can we arrive at
performance metrics that better address the biomedical do-
main interest? The latter is particularly interesting in light
of the fact that the reflection of metrics in the challenge de-
sign was identified as a key strategy for winning a challenge.
In line with recent literature [20, 25, 39, 47], it implies that
common efforts are focused largely on an overfitting to the
current metrics rather than solving the underlying domain
problem. Current initiatives are already addressing this is-
sue [30], but our results imply that challenge organizers
should focus more on ensuring that the actual biomedical
needs are reflected in the design of their competition.

Our work revealed particularly successful algorithm de-
sign choices (Fig. 3) and general strategies for winning
a competition (Fig. 4) (RQ3). In the spirit of reporting
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Figure 4. Strategies for winning a challenge according to winners
of IEEE ISBI 2021 and MICCAI 2021 competitions, ordered by
the sum of the “crucially important” (dark blue) and “very impor-
tant” (light blue) categories. The distribution of importance (from
left to right: not important at all, barely important, moderately im-
portant, very important, crucially important) is depicted for each
strategy.

negative results, we also included the results of the mixed
model analysis despite the lack of statistical significance af-
ter correction for multiplicity of testing. Given the relatively
small dataset (results from 80 competitions) compared to

the number of parameters that we extracted from algorithm
designs and strategies (> 100), we hypothesize that the lack
of statistical significance can largely be attributed to small
sample size.

A limitation of our study could be seen in the fact that
we only covered IEEE ISBI and MICCAI challenges of
one specific year. Prior work, however, revealed that the
competitions performed in the scope of these conferences
cover the majority of all biomedical image analysis compe-
titions [29]. Further limitations can be regarded as general
limitations when working with surveys [11] and include the
uncertainty of self-reported data and the potential bias re-
sulting from the preselection of categorical variables. Fi-
nally, it is not straightforward to address the heterogeneity
of challenges with a single questionnaire. For example, us-
ing an in-domain similar dataset may not always be feasi-
ble due to the sparsity of public biomedical datasets. Simi-
larly, a researcher may regard ensembling as a general key
strategy but may not have had the computing power to train
and optimize multiple models working with video, 3D, or
4D data. To compensate for this effect in the design of the
surveys presented in Sec. 2.1 and Sec. 2.2, we additionally
asked winners for general recommended strategies (Fig. 4).
The discrepancy between general recommendation and fea-
sibility is reflected in the answers. For example, most win-
ners recommend the integration of biologists/clinicians in a
team but did not do so themselves.

Despite the discussed limitations, our findings have the
potential to impact a plethora of stakeholders in challenges.
First, biomedical image analysis researchers and develop-
ers can “stand on the shoulders of giants” (the competition
winners) to improve algorithm development strategies when
approaching a new problem. Second, future challenge or-
ganizers can adapt their designs carefully to the open is-
sues revealed by this work. This would include a focus
on case/instance level rather than pixel/voxel level to reflect
biomedical needs, metrics that reflect biomedical needs (see
below), as well as dataset designs that allow for improving
the capabilities of algorithms to perform well on rare classes
and to generalize across domains. Given that the vast major-
ity of participants perceived limited time and not computing
power as a bottleneck, challenge timelines should be criti-
cally questioned. Finally, the wider community can benefit
from the open research questions we identified (Suppl. F).

In conclusion, we performed the first systematic analy-
sis of biomedical image analysis competitions, which re-
vealed a plurality of novel insights with respect to partici-
pation, organization, and winning. Our work could pave the
way for (1) developers to improve algorithm development
strategies when approaching new problems, and (2) the sci-
entific community to channel its activities into open issues
revealed by this work.
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[7] Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. Fitting linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1):1–48, 2015. 3

[8] Frédéric Cervenansky, Olivier Commowick, François Cot-
ton, Michel Dojat, and Gilles Edan). Multiple sclerosis
new lesions segmentation challenge, Mar. 2021. Zenodo.
https://doi.org/10.5281/zenodo.4575409. 3

[9] Nicolas Chenouard, Ihor Smal, Fabrice De Chaumont, Mar-
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