87 research outputs found
A Generalized Enhanced Quantum Fuzzy Approach for Efficient Data Clustering
© 2013 IEEE. Data clustering is a challenging task to gain insights into data in various fields. In this paper, an Enhanced Quantum-Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm is proposed for data clustering. In the EQIE-FCM, quantum computing concept is utilized in combination with the FCM algorithm to improve the clustering process by evolving the clustering parameters. The improvement in the clustering process leads to improvement in the quality of clustering results. To validate the quality of clustering results achieved by the proposed EQIE-FCM approach, its performance is compared with the other quantum-based fuzzy clustering approaches and also with other evolutionary clustering approaches. To evaluate the performance of these approaches, extensive experiments are being carried out on various benchmark datasets and on the protein database that comprises of four superfamilies. The results indicate that the proposed EQIE-FCM approach finds the optimal value of fitness function and the fuzzifier parameter for the reported datasets. In addition to this, the proposed EQIE-FCM approach also finds the optimal number of clusters and more accurate location of initial cluster centers for these benchmark datasets. Thus, it can be regarded as a more efficient approach for data clustering
Advanced quantum based neural network classifier and its application for objectionable web content filtering
© 2013 IEEE. In this paper, an Advanced Quantum-based Neural Network Classifier (AQNN) is proposed. The proposed AQNN is used to form an objectionable Web content filtering system (OWF). The aim is to design a neural network with a few numbers of hidden layer neurons with the optimal connection weights and the threshold of neurons. The proposed algorithm uses the concept of quantum computing and genetic concept to evolve connection weights and the threshold of neurons. Quantum computing uses qubit as a probabilistic representation which is the smallest unit of information in the quantum computing concept. In this algorithm, a threshold boundary parameter is also introduced to find the optimal value of the threshold of neurons. The proposed algorithm forms neural network architecture which is used to form an objectionable Web content filtering system which detects objectionable Web request by the user. To judge the performance of the proposed AQNN, a total of 2000 (1000 objectionable + 1000 non-objectionable) Website's contents have been used. The results of AQNN are also compared with QNN-F and well-known classifiers as backpropagation, support vector machine (SVM), multilayer perceptron, decision tree algorithm, and artificial neural network. The results show that the AQNN as classifier performs better than existing classifiers. The performance of the proposed objectionable Web content filtering system (OWF) is also compared with well-known objectionable Web filtering software and existing models. It is found that the proposed OWF performs better than existing solutions in terms of filtering objectionable content
A review of clustering techniques and developments
© 2017 Elsevier B.V. This paper presents a comprehensive study on clustering: exiting methods and developments made at various times. Clustering is defined as an unsupervised learning where the objects are grouped on the basis of some similarity inherent among them. There are different methods for clustering the objects such as hierarchical, partitional, grid, density based and model based. The approaches used in these methods are discussed with their respective states of art and applicability. The measures of similarity as well as the evaluation criteria, which are the central components of clustering, are also presented in the paper. The applications of clustering in some fields like image segmentation, object and character recognition and data mining are highlighted
Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects
Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century
The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis
<p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p
Recommended from our members
Manufacturing and Supply Chain Flexibility: Building an Integrative Conceptual Model Through Systematic Literature Review and Bibliometric Analysis
The purpose of this study is twofold: first, to establish the current themes on the topic of manufacturing and supply chain flexibility (MSCF), assess their level of maturity in relation to each other, identify the emerging ones and reflect on how they can inform each other, and second, to develop a conceptual model of MSCF that links different themes connect and highlight future research opportunities. The study builds on a sample of 222 articles published from 1996 to 2018 in international, peer-reviewed journals. The analysis of the sample involves two complementary approaches: the co-word technique to identify the thematic clusters as well as their relative standing and a critical reflection on the papers to explain the intellectual content of these thematic clusters. The results of the co-word analysis show that MSCF is a dynamic topic with a rich and complex structure that comprises five thematic clusters. The value chain, capability and volatility clusters showed research topics that were taking a central role in the discussion on MSCF but were not mature yet. The SC purchasing practices and SC planning clusters involved work that was more focused and could be considered more mature. These clusters were then integrated in a framework that built on the competence–capability perspective and identified the major structural and infrastructural elements of MSCF as well as its antecedents and consequences. This paper proposes an integrative framework helping managers keep track the various decisions they need to make to increase flexibility from the viewpoint of the entire value chain
- …