CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Advanced quantum based neural network classifier and its application for objectionable web content filtering
Authors
N Bharill
J Cao
+6 more
O Gupta
J Li
OP Patel
V Patel
M Prasad
A Tiwari
Publication date
1 January 2019
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
© 2013 IEEE. In this paper, an Advanced Quantum-based Neural Network Classifier (AQNN) is proposed. The proposed AQNN is used to form an objectionable Web content filtering system (OWF). The aim is to design a neural network with a few numbers of hidden layer neurons with the optimal connection weights and the threshold of neurons. The proposed algorithm uses the concept of quantum computing and genetic concept to evolve connection weights and the threshold of neurons. Quantum computing uses qubit as a probabilistic representation which is the smallest unit of information in the quantum computing concept. In this algorithm, a threshold boundary parameter is also introduced to find the optimal value of the threshold of neurons. The proposed algorithm forms neural network architecture which is used to form an objectionable Web content filtering system which detects objectionable Web request by the user. To judge the performance of the proposed AQNN, a total of 2000 (1000 objectionable + 1000 non-objectionable) Website's contents have been used. The results of AQNN are also compared with QNN-F and well-known classifiers as backpropagation, support vector machine (SVM), multilayer perceptron, decision tree algorithm, and artificial neural network. The results show that the AQNN as classifier performs better than existing classifiers. The performance of the proposed objectionable Web content filtering system (OWF) is also compared with well-known objectionable Web filtering software and existing models. It is found that the proposed OWF performs better than existing solutions in terms of filtering objectionable content
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 20/04/2021