1,007 research outputs found

    Two independent photon pairs versus four-photon entangled states in parametric down conversion

    Full text link
    We study the physics of four-photon states generated in spontaneous parametric down-conversion with a pulsed pump field. In the limit where the coherence time of the photons t_c is much shorter than the duration of the pump pulse Delta t, the four photons can be described as two independent pairs. In the opposite limit, the four photons are in a four-particle entangled state. Any intermediate case can be characterized by a single parameter chi, which is a function of t_c/Delta t. We present a direct measurement of chi through a simple experimental setup. The full theoretical analysis is also provided.Comment: 10 pages, 3 figures, submitte

    Odd-skipped genes specify the signaling center that triggers retinogenesis in Drosophila

    Get PDF
    5 páginas, 4 figuras.Although many of the factors responsible for conferring identity to the eye field in Drosophila have been identified, much less is known about how the expression of the retinal `trigger', the signaling molecule Hedgehog, is controlled. Here, we show that the co-expression of the conserved odd-skipped family genes at the posterior margin of the eye field is required to activate hedgehog expression and thereby the onset of retinogenesis. The fly Wnt1 homologue wingless represses the odd-skipped genes drm and odd along the anterior margin and, in this manner, spatially restricts the extent of retinal differentiation within the eye field.This work has been funded through grants BMC2003-06248 (Ministerio de Educación y Ciencia, Spain) and POCTI/BIA-BCM/56043/2004 [Fundação para a Ciência e a Tecnologia (FCT), Portugal], which are co-funded by FEDER, to F.C. C.B-P. and J.B. are funded by FCT.Peer reviewe

    Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Get PDF
    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point

    Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm

    Get PDF
    A dispersively compensated scheme for sum-frequency mixing of broadband ultrashort laser pulses is reported. An increase of the bandwidth of the sum-frequency mixing process by 12 times compared with the noncompensated bandwidth of the given crystal has been demonstrated. Mixing radiation at 266 and 707 nm in a 1-mm-thick beta-barium metaborate crystal by using the compensated scheme results in an output bandwidth of 0.6 nm at 193 nm, which corresponds to a minimum output pulse duration of 90 fs

    Ultrahigh-brightness, femtosecond ArF excimer laser system

    Get PDF
    An ultrahigh-brightness ArF excimer laser system is described that is capable of generating pulse energies of 60 mJ with a pulse duration of ~700 fs. The system utilizes a newly developed seed pulse generation scheme based on spectrally compensated sum-frequency mixing in beta-barium metaborate (BBO), and a double-pass discharge pumped ArF excimer preamplifier followed by an electron beam pumped power amplifier

    Femtosecond gain characteristics of the discharge-pumped ArF excimer amplifier

    Get PDF
    The gain characteristics of a discharge-pumped ArF excimer amplifier are measured with ~700-fs-long pulses. The small-signal gain and saturation energy are found to be 0.17 cm-1 and 3.65 ± 0.15 mJ/cm2, respectively. The maximum output energy density extracted from the deeply saturated amplifier is as much as 10 mJ/cm2. The demonstrated femtosecond gain characteristics of ArF indicate that, by utilizing sufficiently high seed pulse energies, the ArF excimer laser is expected to show a performance similar to a femtosecond high-brightness KrF excimer laser system

    Mode Tracker for Mode-Hop-Free Operation of a Laser

    Get PDF
    A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure
    corecore