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The Two-Camera Version of the Infrared Camera System features two cameras with essentially the

same view and time.

same signal ratio is obtained for both
high- and low-background signals, even
though the low-signal areas may have
greater noise content due to their

smaller signal strength. Thus, one em-
bodiment would use a ratioed output
signal to better represent the gas col-
umn concentration.

An alternative approach uses a sim-
pler multiplication of the filtered signal
to make the filtered signal equal to the
unfiltered signal at most locations, fol-
lowed by a subtraction to remove all but
the wavelength-specific absorption in
the unfiltered sample. This signal pro-
cessing can also reveal the net differ-
ence signal representing the leaking gas
absorption, and allow rapid leak loca-
tion, but signal intensity would not re-
late solely to gas absorption, as raw sig-
nal intensity would also affect the
displayed signal.

A second design choice is whether to
use one camera with two images closely
spaced in time, or two cameras with es-
sentially the same view and time. The fig-
ure shows the two-camera version. This
choice involves many tradeoffs that are
not apparent until some detailed testing
is done. In short, the tradeoffs involve
the temporal changes in the field pic-
ture versus the pixel sensitivity curves
and frame alignment differences with
two cameras, and which system would
lead to the smaller variations from the
uncontrolled variables.

This work was done by Robert Youngquist
and Dale Lueck of Kennedy Space Center
and Christopher Immer and Robert Cox of
ASRC Aerospace Corporation. Further infor-
mation is contained in a TSP (see page 1).
KSC-13207

NASA's Jet Propulsion Laboratory, Pasadena, California

A method has been developed for insert-
ing submonolayer (SML) quantum dots
(QDs) or SML QD stacks, instead of con-
ventional Stranski-Krastanov (S-K) QDs,
into the active region of intersubband pho-
todetectors. A typical configuration would
be InAs SML QDs embedded in thin layers
of GaAs, surrounded by AlGaAs barriers.
Here, the GaAs and the AlGaAs have
nearly the same lattice constant, while InAs
has a larger lattice constant.

In QD infrared photodetector, the im-
portant quantization directions are in
the plane perpendicular to the normal
incidence radiation. In-plane quantiza-
tion is what enables the absorption of
normal incidence radiation. The height
of the S-K QD controls the positions of
the quantized energy levels, but is not
critically important to the desired nor-
mal incidence absorption properties.
The SML QD or SML QD stack configu-

Submonolayer Quantum Dot Infrared Photodetector

rations give more control of the struc-
ture grown, retains normal incidence ab-
sorption properties, and decreases the
strain build-up to allow thicker active lay-
ers for higher quantum efficiency.

This work was done by David Z. Ting,
Sumith V. Bandara, and Sarath D. Guna-
pala of Caltech and Yia-Chung Chang of the
University of Illinois for NASA's Jet Propul-
sion Laboratory. Further information is con-
tained in a TSP (see page 1). NPO-46115

Lyndon B. Johnson Space Center, Houston, Texas

A mode-tracking system that includes
a mode-controlling subsystem has been
incorporated into an external-cavity
(EC) quantum cascade laser that oper-
ates in a mid-infrared wavelength range.

NASA Tech Briefs, August 2010

The mode-tracking system makes it pos-
sible to perform mode-hop-free wave-
length scans, as needed for high-resolu-
tion spectroscopy and detection of trace
gases. The laser includes a gain chip, a

Mode Tracker for Mode-Hop-Free Operation of a Laser

beam-collimating lens, and a diffraction
grating. The grating is mounted on a
platform, the position of which can be
varied to effect independent control of
the EC length and the grating angle.
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The position actuators include a piezo-
electric stage for translation control and
a motorized stage for coarse rotation
control equipped with a piezoelectric ac-
tuator for fine rotation control. To-
gether, these actuators enable control of
the EC length over a range of about 90
pm with a resolution of 0.9 nm, and con-
trol of the grating angle over a coarse-
tuning range of +6.3° and a fine-tuning
range of 520 urad with a resolution of

10 nrad. A mirror mounted on the plat-
form with the grating assures always the
same direction of the output laser beam.

This work was done by Gerard Wysocki,
Frank K. Tittel, and Robert F. Curl of Rice
University for Johnson Space Center.

In accordance with Public Law 96-517,
the contractor has elected to retain title to
this invention. Inquiries concerning
rights for its commercial use should be ad-
dressed to:

Rice University

Office of Technology Transfer

MS-705

6100 Main Street

Houston Texas 77005-1892

Phone No: (713)-348-6188

E-mail: techtran@rice.edu

Refer to MSC-24088-1, volume and num-
ber of this NASA Tech Briefs issue, and the
page number.

Propellant Gauging

Fiber-Optic Continuous Liquid Sensor for Cryogenic

Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution and 1°C
up to a distance of 70 m from the optical interrogation unit.

John H. Glenn Research Center, Cleveland, Ohio

An innovative fiber-optic sensor has
been developed for low-thrust-level set-
tled mass gauging with measurement
uncertainty <0.5 percent over cryogenic
propellant tank fill levels from 2 to 98
percent. The proposed sensor uses a sin-
gle optical fiber to measure liquid level
and liquid distribution of cryogenic pro-
pellants. Every point of the sensing fiber
is a “point sensor” that not only distin-
guishes liquid and vapor, but also meas-
ures temperature. This sensor is able to
determine the physical location of each
“point sensor” with 1-mm spatial resolu-
tion. Acting as a continuous array of nu-
merous liquid/vapor point sensors, the
truly distributed optical sensing fiber
can be installed in a propellant tank in
the same manner as silicon diode point
sensor stripes using only a single feed-
through to connect to an optical signal
interrogation unit outside the tank.

Either water or liquid nitrogen levels
can be measured within 1-mm spatial
resolution up to a distance of 70 meters
from the optical interrogation unit.
This liquid-level sensing technique was
also compared to the pressure gauge
measurement technique in water and
liquid nitrogen contained in a vertical
copper pipe with a reasonable degree of
accuracy. It has been demonstrated that
the sensor can measure liquid levels in
multiple containers containing water or
liquid nitrogen with one signal interro-
gation unit. The liquid levels measured
by the multiple fiber sensors were con-
sistent with those virtually measured by
aruler.

The sensing performance of various op-
tical fibers has been measured, and has
demonstrated that they can survive after
immersion at cryogenic temperatures. The
fiber strength in liquid nitrogen has also

been measured. Multiple water level tests
were also conducted under various actual
and theoretical vibration conditions, and
demonstrated that the signal-to-noise ratio
under these vibration conditions, insofar
as it affects measurement accuracy, is man-
ageable and robust enough for a wide vari-
ety of spacecraft applications. A simple so-
lution has been developed to absorb
optical energy at the termination of the op-
tical sensor, thereby avoiding any feedback
to the optical interrogation unit.

This work was done by Wei Xu of Broad-
band Photonics for Glenn Research Center.
Further information is contained in a TSP
(see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steve Fedor, Mail
Stop 4-8, 21000 Brookpark Road, Cleveland,
Ohio 44135. Refer to LEW-18505-1.

lon Frequency Standards

NASA's Jet Propulsion Laboratory, Pasadena, California

A method eliminates (or recovers
from) residual methane buildup in get-
ter-pumped atomic frequency standard
systems by applying ionizing assistance.
Ultra-high stability trapped ion fre-
quency standards for applications re-
quiring very high reliability, and/or low
power and mass (both for ground-based
and space-based platforms) benefit from
using sealed vacuum systems. These sys-
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tems require careful material selection
and system processing (cleaning and
high-temperature bake-out). Even
under the most careful preparation,
residual hydrogen outgassing from vac-
uum chamber walls typically limits the
base pressure.

Non-evaporable getter pumps
(NEGS) provide a convenient pumping
option for sealed systems because of

lonization-Assisted Getter Pumping for Ultra-Stable Trapped

low mass and volume, and no power
once activated. However, NEGs do not
pump inert gases, methane, and some
other hydrocarbon gases. For ultra-
high vacuum applications, methane
can become the single largest un-
pumped component. Methane colli-
sions with trapped ions (such as
199Hg*) used for frequency standard
applications can produce de-coher-

NASA Tech Briefs, August 2010



