16 research outputs found

    High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface

    Get PDF
    Rising rates of emerging infectious diseases (EIDs) demand creative, efficient, and integrative investigations to understand their transmission, ecological contingencies, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies provide enormous potential to unravel these contingencies to improve our understanding, but their potential is only just starting to be realized. While recent work has largely focused on novel pathogen discovery at likely interfaces, high-throughput methods can also allow disease ecologists to better explore the critical effects of climate, seasonality, and land-use changes on EIDs. HTS can facilitate the creation of entire host-pathogen networks, integrate important microbiome and co-infection data, and even pinpoint important exposure routes at interfaces through environmental media. Here we highlight studies at the frontier of HTS and disease ecology research, identify current limitations, and outline promising future applications for EIDs

    More than mimicry? Evaluating scope for flicker-fusion as a defensive strategy in coral snake mimics

    Get PDF
    Coral snakes and their mimics often have brightly colored banded patterns, generally associated with warning coloration or mimicry. However, such color patterns have also been hypothesized to aid snakes in escaping predators through a ā€œflicker-fusionā€ effect. According to this hypothesis, banded color patterns confuse potential predators when a snake transitions from resting to moving because its bands blur together to form a different color. To produce this motion blur, a moving snakeā€™s bands must transition faster than the critical flicker-fusion rate at which a predatorā€™s photoreceptors can refresh. It is unknown if coral snakes or their mimics meet this requirement. We tested this hypothesis by measuring the movement speed and color patterns of two coral snake mimics, Lampropeltis triangulum campbelli and L. elapsoides, and comparing the frequency of color transitions to the photoreceptor activity of the avian eye. We found that snakes often produced a motion blur, but moving snakes created a blurring effect more often in darker conditions, such as sunrise, sunset, and nighttime when these snakes are often active. Thus, at least two species of coral snake mimics are capable of achieving flicker-fiision, indicating that their color patterns may confer an additional defense aside from mimicry

    Large-herbivore nemabiomes: patterns of parasite diversity and sharing

    Full text link
    Amidst global shifts in the distribution and abundance of wildlife and livestock, we have only a rudimentary understanding of ungulate parasite communities and parasite-sharing patterns. We used qPCR and DNA metabarcoding of fecal samples to characterize gastrointestinal nematode (Strongylida) community composition and sharing among 17 sympatric species of wild and domestic large mammalian herbivore in central Kenya. We tested a suite of hypothesis-driven predictions about the role of host traits and phylogenetic relatedness in describing parasite infections. Host species identity explained 27 ā€“ 53% of individual variation in parasite prevalence, richness, community composition and phylogenetic diversity. Host and parasite phylogenies were congruent, host gut morphology predicted parasite community composition and prevalence, and hosts with low evolutionary distinctiveness were centrally positioned in the parasite- sharing network. We found no evidence that host body size, social-group size or feeding height were correlated with parasite composition. Our results highlight the interwoven evolutionary and ecological histories of large herbivores and their gastrointestinal nematodes and suggest that host identity, phylogeny and gut architecture ā€” a phylogenetically conserved trait related to parasite habitat ā€” are the overriding influences on parasite communities. These findings have implications for wildlife management and conservation as wild herbivores are increasingly replaced by livestock

    Data from: Interacting effects of wildlife loss and climate on ticks and tick-borne disease

    No full text
    Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens (Coxiella burnetii and Rickettsia spp.) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics
    corecore