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Rising rates of emerging infectious diseases (EIDs) demand creative, efficient, and

integrative investigations to understand their transmission, ecological contingencies,

and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS)

methodologies provide enormous potential to unravel these contingencies to improve our

understanding, but their potential is only just starting to be realized. While recent work

has largely focused on novel pathogen discovery at likely interfaces, high-throughput

methods can also allow disease ecologists to better explore the critical effects of climate,

seasonality, and land-use changes on EIDs. HTS can facilitate the creation of entire

host-pathogen networks, integrate important microbiome and co-infection data, and

even pinpoint important exposure routes at interfaces through environmental media. Here

we highlight studies at the frontier of HTS and disease ecology research, identify current

limitations, and outline promising future applications for EIDs.

Keywords: high-throughput (HT) approaches, emerging infectious disease (EID), wildlife-human interaction,

metabarcoding analyses, metagenomic analyses, eDNA, pathogen diversity

INTRODUCTION

Increasing globalization, agricultural intensification, urbanization, and climatic changes have
resulted in a marked recent increase in emerging infectious diseases (EIDs) (Jones et al., 2008,
2013; Hassell et al., 2016). While EIDs are often zoonotic, viral, and triggered by shifts in host
behavior and ecology (Jones et al., 2008; Morse et al., 2012), they are also incredibly diverse and
often display complex transmission dynamics, rendering prediction challenging (Holmes, 2013).
Fortunately, despite this complexity, pressing questions in emerging disease ecology – including
the effect of environmental conditions on infection risk, the role of host microbiome in altering
disease dynamics, and multi-host multi-pathogen relationships (Lively et al., 2014) – may be
effectively broached using molecular advances in the form of high-throughput sequencing (HTS).
HTS already enables EID surveillance at interfaces where humans, wildlife, and domestic animals
overlap, by screening for pathogens in likely reservoir hosts (Carroll et al., 2018). Yet, we
have made relatively little use of the extraordinary potential of HTS approaches to understand
how climate, season, behavior and other ecological factors affect pathogen diversity, in both
the community of pathogens and the within-pathogen heterogeneity that allow for increases in
virulence and infectivity.
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While traditional PCR methods target a small slice of
pathogen diversity in a sample, HTS allows researchers to identify
a wide range of DNA sequences simultaneously using a specified
genetic region (metabarcoding/amplicon-based methods) or all
genetic material (metagenomics,Box 1). To date, health-oriented
researchers have harnessed HTS extensively for novel pathogen
discovery and surveillance (Didelot et al., 2012), and ecologists
have used HTS to understand energy flows in food-web ecology
(e.g., Pompanon et al., 2012), microbial functions in soil sciences
(e.g., Fierer et al., 2012), and the movement of invasive, rare,
or endangered species using environmental DNA (eDNA) (e.g.,
Rees et al., 2014). However, HTS has only recently been used
to reveal the complex ecology of host-pathogen-environmental
interactions, although interest in the topic is rapidly expanding
(Figure 1). With dropping costs and development of field-stable
preservation methods (e.g., Wegleitner et al., 2015), HTS is
increasingly feasible worldwide. This will certainly allow formore
novel pathogen discovery and expansion of effort in remote
and under-served locations where EID risk is highest (Jones
et al., 2008) and many pathogens are undescribed. It should
also facilitate more robust investigations across broad geographic
regions over time, which is ultimately needed to help identify
important locations for continued surveillance.

Identifying Important Interfaces
Given cost and data handling constraints, it is critical to
identify locations and contexts that are likely EID interfaces
(Morse et al., 2012). In general, interfaces may be locations of
increased human-wildlife contact, such as forest edges (Wilcox
and Ellis, 2006), locations with substantial land-use change,
such as increased agricultural intensification (Jones et al., 2013),
or sites where humans have high contact rates with animals,
such as rodents, that thrive in urban environments (Williams
et al., 2018). EID transmission at dynamic interfaces of wildlife,
livestock, and humans occurs via media, such as air, water, food,
and bodily fluids (including vector bites), and many interactions

Box 1 | Key de�nitions

Bioinformatics: a method of “conceptualizing biology in terms of molecules

and applying information techniques (derived from disciplines such as

applied math, computer science and statistics) to understand and organize

the information associated with these molecules, on a large scale”

(Luscombe et al., 2001).

Environmental DNA (eDNA): “genetic material obtained directly from

environmental samples (soil, sediment, water, etc.) without any obvious signs

of biological source material.” (Thomsen and Willerslev, 2015).

High Throughput Sequencing (HTS); also Next Generation

Sequencing (NGS): “… [a] method used to determine a portion of

the nucleotide sequence of an individual’s genome. This technique utilizes

DNA sequencing technologies that are capable of processing multiple DNA

sequences in parallel.” (National Cancer Institute Dictionary of Genetic Terms)

Metabarcoding: “...[T]he automated identification of multiple species from a

single bulk sample containing entire organisms or from a single environmental

sample containing degraded DNA” (Taberlet et al., 2012).

are likely influenced by seasonal (Altizer et al., 2006), climatic
(Harvell et al., 2002), or ecological context (Patz et al., 2004).

Host-Specific Surveillance for EIDs
Many HTS surveillance efforts directly screen wildlife hosts for
pathogens that are either the causative agent or closely related
to current EIDs, and research efforts have thus concentrated
on viruses in domestic animals, bats, rodents, and non-human
primates (e.g., Temmam et al., 2014; Carroll et al., 2018),
which are primary reservoirs of EIDs. In bats alone, HTS
studies have revealed viruses closely related to and known to
cause Ebola, Nipah, Marburg, and other coronoviruses (Han
et al., 2015). In particular, a prominent multinational research
program, PREDICT, uses a combination of simple molecular and
HTS techniques for viral surveillance in wildlife, livestock and
humans at likely interfaces (Morse et al., 2012). These efforts
have revealed more than 800 novel viruses and have contributed
to an extensive database of zoonotic pathogens (Epstein and
Anthony, 2017). Other studies have focused on diverse parasite
types across hosts, including Chagas-like trypanosomes in bats
(Dario et al., 2017), Babesia and Rickettsial pathogens in non-
human primates (Nakayima et al., 2014), and pathogenic bacteria
in urban mice (Williams et al., 2018).

While these studies collect valuable pathogen detection and
identification data, most do not assess prevalence, ecological risk
factors, or infection dynamics using multi-pathogen methods
(Bodewes, 2018). Collecting concurrent data on host movements
at interfaces across seasons could allow researchers to understand
spatial, temporal, or host-specific attributes that contribute to
pathogen diversity, especially in investigations of viral evolution
and transmission pathways following outbreaks (e.g., Ramey
et al., 2017). For example, one recent study used metabarcoding
to determine feeding patterns and population structure of
vampire bats that could be used to inform projections of rabies
transmission across interfaces (Bohmann et al., 2018). Other
studies have connected host microbial communities to parasite
infection, revealing potential important evolutionary links (Zaiss
and Harris, 2016; Rosa et al., 2018). Other studies that focus
on ecological risk factors for pathogen infection (e.g., Oakgrove
et al., 2014; Titcomb et al., 2017; Young et al., 2017) have been
constrained to one or a few focal pathogens, but their scope can
be expanded via HTS, promising to reveal insights for a wide
range of diseases (Table 1).

Environmental Surveillance for EIDs
Despite swelling databases of host-parasite associations (e.g.,
Nunn and Altizer, 2005; Bensch et al., 2009; Urban et al.,
2015), we still know relatively little of mechanistic sources of
infection risk. Extending HTS use to explore hypotheses of
transmission mechanisms and environmental sampling should
enable researchers to pinpoint infection sources or dangerous
interfaces. Although there is a clear need for elucidating
mechanisms (Littlefair and Clare, 2016), progress had been slow
for EIDs without insect vectors, given that indirect pathways are
often complex and dynamic. For example, increasing evidence
suggests that bat viruses are predominantly transmitted via
secondary reservoirs that consume fruits contaminated with bat
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FIGURE 1 | A Web of Science search for combinations of the words metabarcod* or metagenom* or eDNA and emerging pathogen, parasite, or emerging disease

revealed 278 relevant publications, demonstrating the accelerating interest in using HTS approaches to understand the ecology of emerging diseases across a range

of applications. Articles for 2018 do not include December publications. Categories were defined as: Eco/Environment—HTS used to detect changes across

pathogen communities in different environments, Eco/Interaction—interactions of microbiota or other organisms with pathogen communities,

Review/Comment—reviews or commentaries, Tool/Method—new protocols, tools, or comparisons of methods, Diagnosis—HTS used to diagnose disease or identify

aetiological agents, Discovery—HTS used to discover or describe new pathogens.

saliva (Han et al., 2015; Mann et al., 2015). Application of
HTS to these suspected transmission sources could pinpoint
problematic interfaces. Given that bats are frequently persecuted
for their zoonotic connections (Schneeberger and Voigt, 2016),
surveillance via intermediate hosts or likely transmission sources
to humans (i.e., fruits) may even decrease persecution by
identifying feasible interventions.

Just as individual hosts may act as pathogen superspreaders,
specific interfaces may act as hotspots of pathogen transmission
(Paull et al., 2012). HTS now allows researchers to interrogate
environmental media (e.g., water, soil, food) for a wide variety
of pathogens simultaneously, a feat that was impossible until
very recently. Application of HTS to eDNA has numerous
potential benefits for advancing understanding of diseases at
interfaces and in environmental media (soil, water, air) (Bass
et al., 2015). Monitoring water sources using metagenomics has
become increasingly popular (Nieuwenhuijse and Koopmans,
2017), with applications revealing pathogen community shifts
across land-use types (Gu et al., 2018), pathogen movement via
commercial ships (Lohan et al., 2016), and mapping of high-risk
sites from wastewater sampling (Cantalupo et al., 2011). Further
useful applications might enable researchers to explore the effect
of environmental policy measures, land management changes
(e.g., dam creation), or species (re)introductions on pathogen
prevalence and diversity at important interfaces.

Vector Surveillance for EIDs
Screening vectors for pathogens is a clear application of HTS
to understanding EID transmission at human-wildlife interfaces.

This practice has expanded in the past decade, with particular
focus on mosquitoes and ticks (Temmam et al., 2014). For
example, recent work detected an emerging rickettsial pathogen
in ticks in California (Bouquet et al., 2017), novel Bunyaviruses
(a viral family that includes Crimean-Congo Hemorrhagic Fever
and others) (Sakamoto et al., 2016; Bouquet et al., 2017), and
numerous potentially-pathogenic bacterial genera in saliva across
tick species (Qiu et al., 2014). While novel pathogen discovery
is critical, understanding the ecology of vector-borne pathogens
requires consideration of host communities, environmental
and seasonal effects, and vector-pathogen interactions, among
others (Table 1).

Recent molecular studies have considered how vector
microbiomes may affect pathogens in different contexts. For
example, one study used metabarcoding to determine that
mosquito microbiota were more diverse in rural areas compared
to urban areas, and varied substantially by species (Thongsripong
et al., 2018). Other investigations have sought to identify
microbial differences in infected mosquitoes (Villegas et al.,
2018), ticks (Narasimhan et al., 2014), and triatomines (Gumiel
et al., 2015). Furthermore, harnessing HTS to reveal feeding
information with that of standard vector surveillance can
allow the development of transmission networks, increasing
our knowledge of disease dynamics, and ultimately informing
public health approaches by identifying key species or pathogen
superspreaders. One study detected decreasing diversity of
hosts for sandflies and mosquitoes across a disturbance
gradient (Kocher et al., 2017), demonstrating a potential
system for investigation of pathogen prevalence and vector
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TABLE 1 | Questions in disease ecology that have been addressed with HTS approaches.

Question Media/taxa Target DNA Findings References

How do anthropogenic

changes affect pathogen

diversity and prevalence?

Mosquitoes

Sandflies and

Mosquitoes

Water

Ballast water

Microbiota

Host and vector

Waterborne viruses

Protist parasites

Mosquito microbiota that affect pathogen

prevalence were less diverse in urban areas.

Diversity of hosts used by mosquitos and sandflies

declines along a disturbance gradient.

Land use and type of water source drive viral

community structure.

A broad range of protistan parasites can be

transported across oceans via cargo vessels.

Thongsripong et al., 2018

Kocher et al., 2017

Gu et al., 2018

Lohan et al., 2016

What are the likely transmission

pathways for prominent

diseases? Can infection sources

be identified for management

purposes?

Bats

Humans and water

sources

Bait water

Rabies

Typhoid strains

Broad range

of pathogens

Metabarcoding revealed bat feeding preferences

and population structure to inform local prevention

of rabies transmission.

Genome sequencing revealed spatial clustering of

typhoid strains, importance of indirect transmission

at water sources.

Bait water has substantially greater abundance and

diversity of pathogens than natural lakes, revealing a

potential pathway of fish pathogen spread.

Bohmann et al., 2018

Baker et al., 2011

Mahon et al., 2018

Can host-parasite sharing

networks be mapped and

compared across contexts?

Triatomines (kissing

bugs)

Sandflies

and mosquitoes

Triatome microbiome,

hosts,

trypanosome parasites

Vertebrate host DNA

Triatomes switch hosts with unexpected frequency:

the majority of hosts are humans, domestics, and

synanthropes.

Associations between important vectors and hosts

were revealed across habitat types.

Dumonteil et al., 2018

Kocher et al., 2017

How do host demography,

location, behavior, group

structure, movement, and

microbiome affect entire

pathogen communities? Do

community level results

correspond to single

host-parasite findings?

Cattle

Lemurs

Humans

Ticks

Intestinal nematodes

Intestinal parasites and

microbiota

Intestinal parasites and

microbiota

Microbiota

Parasite diversity was higher in cattle in warmer

climates; anti-helminthic treatment modified parasite

communities but did not eradicate them.

Infection with certain parasites substantially altered

gut biota and diversity.

Certain bacteria were associated with helminth

infection. Bacterial functions were linked to helminth

biology and survival in the host.

Tick gut microbiota facilitate colonization by

Borrelia burgdorferi.

Avramenko et al., 2017

Aivelo and Norberg, 2017

Rosa et al., 2018

Narasimhan et al., 2014

feeding networks in response to anthropogenic change. Another
recent study simultaneously characterized diverse host species
and prevalence of Trypanosoma cruzi, the causative agent of
Chagas disease, by sequencing the guts of Triatomines to
create a potential transmission network (Dumonteil et al.,
2018). By comparing host feeding and transmission networks
across ecological gradients or following changes to host
communities (e.g., wildlife loss, increased livestock, invasive
species) researchers could model likely future disease outcomes
in changing ecosystems.

Holistic Approaches
Integrating data on pathogen sequences found in hosts, vectors
and the environment will enable researchers to reveal seasonal,
climatic, or ecological patterns affecting EID transmission.
However, many HTS applications focus on pathogen detection
in either hosts, vector, or the environment, and studies that
do focus on these in tandem are usually constrained to single
pathogens. For example, one study investigated prevalence
of Cryptosporidium parvum in cattle hosts, humans, and
water sources simultaneously to show potential pathways of
environmental transmission (Peng et al., 2003). Another study
allowed researchers to confirm that the majority of typhoid
infections in Nepal were indirectly transmitted, and likely to

be spread via public water spouts, where sequences of two
different typhoid-causing pathogens were found (Baker et al.,
2011). Future studies using HTS could allow researchers to draw
similar conclusions for an entire suite of parasites. An integrated
research approach that reveals pathogen diversity within hosts
and across interfaces may allow researchers to better understand
why certain pathogens are successfully transmitted while others
are not. When armed with data on pathogen diversity in wild
hosts, their behavior at interfaces, and pathogen prevalence in
environmental media that humans and their livestock encounter,
we may be able to develop successful barriers to transmission that
promote wildlife conservation.

Limitations
There are several important limitations to HTS-based inferences
about pathogens. For example, the metagenomic process tends
to compound errors, particularly in environmental samples
(Darling andMahon, 2011), obscuring inferences about pathogen
diversity. While noninvasive genetic approaches, such as eDNA
with HTS, have a well-documented road map for methodological
development to account for errors (Beja-Pereira et al., 2009),
pathogens pose additional challenges beyond those encountered
in the search for macrofaunal biodiversity from eDNA. In
particular, pathogens and parasites are enormously diverse
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(Poulin and Morand, 2000), making development of primers
to target a range of pathogens for metabarcoding challenging.
Furthermore, database coverage of pathogens is substantially
less-developed than in other organisms (Ryan et al., 2017),
resulting in identification uncertainty and inaccurate estimates
of pathogen richness. The solution is increased storage and
management of pathogen genome and metagenome databases
(McNeil et al., 2007; Carroll et al., 2018; Zhang et al., 2018)
coupled with additional field and laboratory expertise to
document the breadth of global pathogen diversity. Yet, costs are
still high, especially in regions where pathogen diversity is highest
and likely to have the strongest impacts on human and animal
health (Jones et al., 2008; Ryan et al., 2017).

Technology is rapidly improving our ability to identify
sequences to species or strain (Luo et al., 2012). Single marker
studies with short base pair read lengths can provide uncertain
results with sequences identified only to pathogen groups (i.e.,
Vibrio, Legionella, Mycobacterium) (Mahon et al., 2018). While
multiple marker inferences (Olds et al., 2016) and growing
bioinformatics programs will improve our ability to identify
specific pathogens, technology, and primer development for
longer and reliable sequence reads will be beneficial. Similarly,
improved methods to detect rare and elusive species (Jerde
et al., 2011), and to evaluate sampling adequacy (Grey et al.,
2018) have been developed, but the broader experimental design
framework to guide future work is still an area of active research.
Increased application of HTS across a wide range of scientific
fields has also increased demand for innovation in multivariate
statistics to compare pathogen communities over space, time, and
environmental gradients (Paliy and Shankar, 2016).

Finally, a critical challenge lies in determining which
pathogens are, or will be, virulent in humans or their domestic
animals and in what contexts (Temmam et al., 2014; Epstein
and Anthony, 2017). While continued surveillance of both
healthy and diseased animals will help to identify harmful
pathogens (Levinson et al., 2013), HTS methods will often
need to be used as a complement to traditional methods in
diagnosing infectious diseases (Miller et al., 2013; Simner et al.,
2018). While infectious disease outbreaks remain challenging to
predict, HTS methods offer substantial advantages in improving

much-needed surveillance and broader understanding of EIDs
(Holmes et al., 2018).

CONCLUSIONS AND FUTURE
DIRECTIONS

In the past decade, the number of articles that combine HTS and
disease ecology has increased more than 10-fold, revealing the
potential for enormous gains in understanding the underlying
ecology of EIDs. However, many studies have focused on novel
pathogen discovery, and vital contextual information is missing.
While substantial, current technological limitations are being
addressed, expanding the breadth and reliability of HTS studies.
By pairing ecological concepts with HTS and epidemiological
expertise, researchers will better address outstanding knowledge
gaps: the effect of anthropogenic changes on pathogen diversity,
exposure, and infectivity; the primary and secondary routes of
EID transmission through environmental media; multi-host-
multi-pathogen dynamics; and development of complete host-
parasite networks that further our understanding of these
critically-important diseases.
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