5,474 research outputs found

    Response maxima in time-modulated turbulence: Direct Numerical Simulations

    Get PDF
    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulations of the Navier-Stokes equations. The large-scale forcing is modulated via periodic energy input variations at frequency ω\omega. The response is maximal for frequencies in the range of the inverse of the large eddy turnover time, confirming the mean-field predictions of von der Heydt, Grossmann and Lohse (Phys. Rev. E 67, 046308 (2003)). In accordance with the theory the response maximum shows only a small dependence on the Reynolds number and is also quite insensitive to the particular flow-quantity that is monitored, e.g., kinetic energy, dissipation-rate, or Taylor-Reynolds number. At sufficiently high frequencies the amplitude of the kinetic energy response decreases as 1/ω1/\omega. For frequencies beyond the range of maximal response, a significant change in phase-shift relative to the time-modulated forcing is observed.Comment: submitted to Europhysics Letters (EPL), 8 pages, 8 Postscript figures, uses epl.cl

    High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND

    Get PDF
    Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8  MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2  cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models

    Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle

    Get PDF
    The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur

    Charge asymmetry in hadroproduction of heavy quarks

    Get PDF
    A sizeable difference in the differential production cross section of top and antitop quarks, respectively, is predicted for hadronically produced heavy quarks. It is of order αs\alpha_s and arises from the interference between charge odd and even amplitudes respectively. For the TEVATRON it amounts to approximately 5-10% in the region where the cross section is large and could therefore be measured in the next round of experiments. At the LHC the asymmetry can be studied by selecting appropriately chosen kinematical regions.Comment: LaTeX, 5pp, 5 figures, uses revtex. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ Final version as published in Phys.Rev.Let

    Modeling and Analysis of the W7-X High Heat-Flux Divertor Scraper Element

    Get PDF

    Characterizing SRAM Single Event Upset in Terms of Single and Double Node Charge Collection

    Get PDF
    A well-collapse source-injection mode for SRAM SEU is demonstrated through TCAD modeling. The recovery of the SRAM s state is shown to be based upon the resistive path from the p+-sources in the SRAM to the well. Multiple cell upset patterns for direct charge collection and the well-collapse source-injection mechanisms are then predicted and compared to recent SRAM test data

    First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance

    Get PDF
    KamLAND has been used to measure the flux of νˉe\bar{\nu}_e's from distant nuclear reactors. In an exposure of 162 ton\cdotyr (145.1 days) the ratio of the number of observed inverse β\beta-decay events to the expected number of events without disappearance is 0.611±0.085(stat)±0.041(syst)0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} for νˉe\bar{\nu}_e energies >> 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard νˉe\bar{\nu}_e propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the `Large Mixing Angle' solution to the solar neutrino problem using reactor νˉe\bar{\nu}_e sources.Comment: 6 pages, 6 figure
    corecore