6,009 research outputs found
Response maxima in time-modulated turbulence: Direct Numerical Simulations
The response of turbulent flow to time-modulated forcing is studied by direct
numerical simulations of the Navier-Stokes equations. The large-scale forcing
is modulated via periodic energy input variations at frequency . The
response is maximal for frequencies in the range of the inverse of the large
eddy turnover time, confirming the mean-field predictions of von der Heydt,
Grossmann and Lohse (Phys. Rev. E 67, 046308 (2003)). In accordance with the
theory the response maximum shows only a small dependence on the Reynolds
number and is also quite insensitive to the particular flow-quantity that is
monitored, e.g., kinetic energy, dissipation-rate, or Taylor-Reynolds number.
At sufficiently high frequencies the amplitude of the kinetic energy response
decreases as . For frequencies beyond the range of maximal response,
a significant change in phase-shift relative to the time-modulated forcing is
observed.Comment: submitted to Europhysics Letters (EPL), 8 pages, 8 Postscript
figures, uses epl.cl
High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND
Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8  MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2  cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models
Charge asymmetry in hadroproduction of heavy quarks
A sizeable difference in the differential production cross section of top and
antitop quarks, respectively, is predicted for hadronically produced heavy
quarks. It is of order and arises from the interference between
charge odd and even amplitudes respectively. For the TEVATRON it amounts to
approximately 5-10% in the region where the cross section is large and could
therefore be measured in the next round of experiments. At the LHC the
asymmetry can be studied by selecting appropriately chosen kinematical regions.Comment: LaTeX, 5pp, 5 figures, uses revtex. The complete paper, including
figures, is also available via anonymous ftp at
ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at
http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ Final version as
published in Phys.Rev.Let
Novel Technique for Ultra-sensitive Determination of Trace Elements in Organic Scintillators
A technique based on neutron activation has been developed for an extremely
high sensitivity analysis of trace elements in organic materials. Organic
materials are sealed in plastic or high purity quartz and irradiated at the
HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are
first preconcentrated by clean vacuum evaporation. Activities of interest are
separated from side activities by acid digestion and ion exchange. The
technique has been applied to study the liquid scintillator used in the KamLAND
neutrino experiment. Detection limits of <2.4X10**-15 g 40K/g LS, <5.5X10**-15
g Th/g LS, and <8X10**-15 g U/g LS have been achieved.Comment: 16 pages, 3 figures, accepted for publication in Nuclear Instruments
and Methods
Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur
- …