2,388 research outputs found

    A theoretical framework for combining techniques that probe the link between galaxies and dark matter

    Full text link
    We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy despite the potential of such combinations to elucidate the galaxy-dark matter connection, to constrain cosmological parameters, and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. In a companion paper, we demonstrate that the model presented here provides an excellent fit to galaxy-galaxy lensing, galaxy clustering, and stellar mass functions measured in the COSMOS survey from z=0.2 to z=1.0. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance on each of the three probes. Finally, we analyze and discuss how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate the various features of the observed galaxy stellar mass function (low-mass slope, plateau, knee, and high-mass cut-off) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed plateau feature in the stellar mass function at Mstellar~2x10^10 Msun is due to the transition that occurs in the stellar-to-halo mass relation at Mhalo ~ 10^12 Msun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.Comment: 21 pages. Accepted to Ap

    Where do "red and dead" early-type void galaxies come from?

    Full text link
    Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a sub-population of bright red void galaxies can also be found, whose star formation was shut down long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids? We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium Simulation. We show that a global star formation suppression mechanism in the form of low luminosity "radio mode" AGN heating is sufficient to reproduce the observed population of void early-types. Radio mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately M_vir~10^12.5 M_sun, gas cooling onto the galaxy is suppressed and star formation subsequently fades. In the Millennium Simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high mass tail above this critical threshold. In such void halos, radio mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by halos of similar mass are predicted to have similar properties, consistent with observations.Comment: 6 pages, 3 figures, accepted MNRA

    Angular Momentum Evolution of Stars in the Orion Nebula Cluster

    Full text link
    (Abridged) We present theoretical models of stellar angular momentum evolution from the Orion Nebula Cluster (ONC) to the Pleiades and the Hyades. We demonstrate that observations of the Pleiades and Hyades place tight constraints on the angular momentum loss rate from stellar winds. The observed periods, masses and ages of ONC stars in the range 0.2--0.5 M_\odot, and the loss properties inferred from the Pleiades and Hyades stars, are then used to test the initial conditions for stellar evolution models. We use these models to estimate the distribution of rotational velocities for the ONC stars at the age of the Pleiades (120 Myr). The modeled ONC and observed Pleiades distributions of rotation rates are not consistent if only stellar winds are included. In order to reconcile the observed loss of angu lar momentum between these two clusters, an extrinsic loss mechanism such as protostar-accretion disk interaction is required. Our model, which evolves the ONC stars with a mass dependent saturation threshold normalized such that ωcrit=5.4ω\omega_{crit} = 5.4 \omega_\odot at 0.5 \m, and which includes a distribution of disk lifetimes that is uniform over the range 0--6 Myr, is consistent with the Pleiades. This model for disk-locking lifetimes is also consistent with inferred disk lifetimes from the percentage of stars with infrared excesses observed in young clusters. Different models, using a variety of initial period distributions and different maximum disk lifetimes, are also compared to the Pleiades. For disk-locking models that use a uniform distribution of disk lifetimes over the range 0 to τmax\tau_{max}, the acceptable range of the maximum lifetime is 3.5<τmax<8.53.5 < \tau_{max} < 8.5 Myr.Comment: 21 pages, 7 figures, submitted to Ap

    From Galaxy-Galaxy Lensing to Cosmological Parameters

    Get PDF
    Galaxy-galaxy lensing measures the mean excess surface density DS(r) around a sample of lensing galaxies. We develop a method for combining DS(r) with the galaxy correlation function xi_gg(r) to constrain Omega_m and sigma_8, going beyond the linear bias model to reach the level of accuracy demanded by current and future measurements. We adopt the halo occupation distribution (HOD) framework, and we test its applicability to this problem by examining the effects of replacing satellite galaxies in the halos of an SPH simulation with randomly selected dark matter particles from the same halos. The difference between dark matter and satellite galaxy radial profiles has a ~10% effect on DS(r) at r<1 Mpc/h. However, if radial profiles are matched, the remaining impact of individual subhalos around satellite galaxies and environmental dependence of the HOD at fixed halo mass is <5% in DS(r) for 0.1<r<15 Mpc/h. We develop an analytic approximation for DS(r) that incorporates halo exclusion and scale-dependent halo bias, and we demonstrate its accuracy with tests against a suite of populated N-body simulations. We use the analytic model to investigate the dependence of DS(r) and the galaxy-matter correlation function xi_gm(r) on Omega_m and sigma_8, once HOD parameters for a given cosmological model are pinned down by matching xi_gg(r). The linear bias prediction is accurate for r>2 Mpc/h, but it fails at the 30-50% level on smaller scales. The scaling of DS(r) ~ Omega_m^a(r) sigma_8^b(r) approaches the linear bias expectation a=b=1 at r>10 Mpc/h, but a(r) and b(r) vary from 0.8 to 1.6 at smaller r. We calculate a fiducial DS(r) and scaling indices a(r) and b(r) for two SDSS galaxy samples; galaxy-galaxy lensing measurements for these samples can be combined with our predictions to constrain Omega_m and sigma_8.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters

    Full text link
    We place constraints on the average density (Omega_m) and clustering amplitude (sigma_8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct non-linear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w_p and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Omega_m or sigma_8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, even though this technique does not use abundance information. Using w_p and M/N alone, we find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data, these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All errors are 1-sigma. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap

    Cosmic Voids and Galaxy Bias in the Halo Occupation Framework

    Full text link
    (Abridged) We investigate the power of void statistics to constrain galaxy bias and the amplitude of dark matter fluctuations. We use the halo occupation distribution (HOD) framework to describe the relation between galaxies and dark matter. After choosing HOD parameters that reproduce the mean space density n_gal and projected correlation function w_p measured for galaxy samples with M_r<-19 and M_r<-21 from the Sloan Digital Sky Survey (SDSS), we predict the void probability function (VPF) and underdensity probability function (UPF) of these samples by populating the halos of a large, high-resolution N-body simulation. If we make the conventional assumption that the HOD is independent of large scale environment at fixed halo mass, then models constrained to match n_gal and w_p predict nearly identical void statistics, independent of the scatter between halo mass and central galaxy luminosity or uncertainties in HOD parameters. Models with sigma_8=0.7 and sigma_8=0.9 also predict very similar void statistics. However, the VPF and UPF are sensitive to environmental variations of the HOD in a regime where these variations have little impact on w_p. For example, doubling the minimum host halo mass in regions with large scale (5 Mpc/h) density contrast delta<-0.65 has a readily detectable impact on void probabilities of M_r<-19 galaxies, and a similar change for delta<-0.2 alters the void probabilities of M_r<-21 galaxies at a detectable level. The VPF and UPF provide complementary information about the onset and magnitude of density- dependence in the HOD. By detecting or ruling out HOD changes in low density regions, void statistics can reduce systematic uncertainties in the cosmological constraints derived from HOD modeling, and, more importantly, reveal connections between halo formation history and galaxy properties.Comment: emulateapj, 16 pages, 13 figure

    The Large Scale Bias of Dark Matter Halos: Numerical Calibration and Model Tests

    Get PDF
    We measure the clustering of dark matter halos in a large set of collisionless cosmological simulations of the flat LCDM cosmology. Halos are identified using the spherical overdensity algorithm, which finds the mass around isolated peaks in the density field such that the mean density is Delta times the background. We calibrate fitting functions for the large scale bias that are adaptable to any value of Delta we examine. We find a ~6% scatter about our best fit bias relation. Our fitting functions couple to the halo mass functions of Tinker et. al. (2008) such that bias of all dark matter is normalized to unity. We demonstrate that the bias of massive, rare halos is higher than that predicted in the modified ellipsoidal collapse model of Sheth, Mo, & Tormen (2001), and approaches the predictions of the spherical collapse model for the rarest halos. Halo bias results based on friends-of-friends halos identified with linking length 0.2 are systematically lower than for halos with the canonical Delta=200 overdensity by ~10%. In contrast to our previous results on the mass function, we find that the universal bias function evolves very weakly with redshift, if at all. We use our numerical results, both for the mass function and the bias relation, to test the peak-background split model for halo bias. We find that the peak-background split achieves a reasonable agreement with the numerical results, but ~20% residuals remain, both at high and low masses.Comment: 11 pages, submitted to ApJ, revised to include referee's coment

    Measurement of Residual Flexibility for Substructures Having Prominent Flexible Interfaces

    Get PDF
    Verification of a dynamic model of a constrained structure requires a modal survey test of the physical structure and subsequent modification of the model to obtain the best agreement possible with test data. Constrained-boundary or fixed-base testing has historically been the most common approach for verifying constrained mathematical models, since the boundary conditions of the test article are designed to match the actual constraints in service. However, there are difficulties involved with fixed-base testing, in some cases making the approach impractical. It is not possible to conduct a truly fixed-base test due to coupling between the test article and the fixture. In addition, it is often difficult to accurately simulate the actual boundary constraints, and the cost of designing and constructing the fixture may be prohibitive. For use when fixed-base testing proves impractical or undesirable, alternate free-boundary test methods have been investigated, including the residual flexibility technique. The residual flexibility approach has been treated analytically in considerable detail and has had limited frequency response measurements for the method. This concern is well-justified for a number of reasons. First, residual flexibilities are very small numbers, typically on the order of 1.0E-6 in/lb for translational diagonal terms, and orders of magnitude smaller for off-diagonal values. This poses difficulty in obtaining accurate and noise-free measurements, especially for points removed from the excitation source. A second difficulty encountered in residual measurements lies in obtaining a clean residual function in the process of subtracting synthesized modal data from a measured response function. Inaccuracies occur since modes are not subtracted exactly, but only to the accuracy of the curve fits for each mode; these errors are compounded with increasing distance from the excitation point. In this paper, the residual flexibility method is applied to a simple structure in both test and analysis. Measured and predicted residual functions are compared, and regions of poor data in the measured curves are described. It is found that for accurate residual measurements, frequency response functions having prominent stiffness lines in the acceleration/force format are needed. The lack of such stiffness lines increases measurement errors. Interface drive point frequency respose functions for shuttle orbiter payloads exhibit dominant stiffness lines, making the residual test approach a good candidate for payload modal tests when constrained tests are inappropriate. Difficulties in extracting a residual flexibility value from noisy test data are discussed. It is shown that use of a weighted second order least-squares curve fit of the measured residual function allows identification of residual flexibility that compares very well with predictions for the simple structure. This approach also provides an estimate of second order residual mass effects
    corecore