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ABSTRACT

We measure the clustering of dark matter halos in a large set of collisionless cosmological simulations of the flat
ΛCDM cosmology. Halos are identified using the spherical overdensity algorithm, which finds the mass around
isolated peaks in the density field such that the mean density is Δ times the background. We calibrate fitting functions
for the large-scale bias that are adaptable to any value of Δ we examine. We find a ∼6% scatter about our best-fit
bias relation. Our fitting functions couple to the halo mass functions of Tinker et al. such that the bias of all dark
matter is normalized to unity. We demonstrate that the bias of massive, rare halos is higher than that predicted
in the modified ellipsoidal collapse model of Sheth et al. and approaches the predictions of the spherical collapse
model for the rarest halos. Halo bias results based on friends-of-friends halos identified with linking length 0.2 are
systematically lower than for halos with the canonical Δ = 200 overdensity by ∼10%. In contrast to our previous
results on the mass function, we find that the universal bias function evolves very weakly with redshift, if at all. We
use our numerical results, both for the mass function and the bias relation, to test the peak-background split model
for halo bias. We find that the peak-background split achieves a reasonable agreement with the numerical results,
but ∼20% residuals remain, both at high and low masses.
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1. INTRODUCTION

Dark matter halos are biased tracers of the underlying dark
matter distribution. Massive halos form from high-σ fluctuations
in the primordial density field, inducing a correlation between
halo mass and clustering amplitude that is steepest for cluster-
sized objects (Kaiser 1984). Low-mass halos are preferentially
found in regions of the universe with below average density,
thus these objects are anti-biased with respect to the dark
matter. The clustering of galaxies is now understood through
the bias of the halos in which they form (e.g., Zehavi et al.
2005). Many methods that utilize galaxy clustering to constrain
cosmology require precise knowledge of halo clustering (e.g.,
van den Bosch et al. 2003; Tinker et al. 2005; Abazajian
et al. 2005; Zheng & Weinberg 2007; Yoo et al. 2009).
Cosmological parameters can also be obtained through the
abundance of high-mass halos identified as galaxy clusters. The
bias of clusters contains complementary information to their
abundance. Indeed, “self-calibration” of cluster surveys is not
possible without the additional information present in clustering
data (Lima & Hu 2004, 2005; Majumdar & Mohr 2004; Oguri
2009). The purpose of this paper is to calibrate a precise, flexible
halo bias function from numerical simulations that is accurate
for dwarf galaxies through galaxy cluster masses.

In Tinker et al. (2008, hereafter T08), we presented a
recalibration of the halo mass function based on a large series

10 Hubble Fellow.

of collisionless N-body simulations. Our results utilized the
spherical overdensity (SO) algorithm for identifying dark matter
halos within simulations (e.g., Lacey & Cole 1994). In this
approach, halos are identified as isolated density peaks, and
the mass of a halo is determined by the overdensity Δ, defined
here as the mean interior density relative to the background.
Simulations of cluster formation show that the SO-defined halo
mass should correlate tightly with cluster observables, which
are usually defined within a spherical aperture (e.g., Bialek
et al. 2001; da Silva et al. 2004; Nagai 2006; Kravtsov et al.
2006). This expectation is borne out for observables such as gas
mass, core-excised luminosity, integrated Sunyaev–Zel’dovich
(SZ) flux, or its X-ray analog, YX (e.g., Mohr et al. 1999;
Vikhlinin et al. 2006; Zhang et al. 2008; Vikhlinin et al. 2009;
Arnaud et al. 2007, 2009; Sun et al. 2009). Tight correlations
between SO mass and observables are crucial for a robust
interpretation of the observed cluster counts and clustering
in deriving cosmological constraints. The scatter of mass-
observable relations may depend on the value of Δ. In addition,
particular observations may only extend out to a limited radius
corresponding to Δ considerably higher than the often used virial
value of Δ ≈ 200. Thus, we seek to calibrate a fitting function
that can be adapted to any value of Δ.

Hu & Kravtsov (2003) and Manera et al. (2009) compared
existing halo bias models to SO N-body results at the cluster
mass scale. But previous studies to calibrate halo bias on
numerical simulations have focused exclusively on the friends-
of-friends (FOF) halo finding algorithm (Jing 1998, 1999; Sheth
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Table 1
Properties of the Simulation Set

Lbox (h−1 Mpc) Name ε (h−1 kpc) Np mp (h−1 M�) (Ωm, Ωb, σ8, h, n) Code zi zout Δmax

768 H768 25 10243 3.51 × 1010 (0.3, 0.04, 0.9, 0.7, 1) HOT 40 0 800
384 H384 14 10243 4.39 × 109 (0.3, 0.04, 0.9, 0.7, 1) HOT 48 0 3200
271 H271 10 10243 1.54 × 109 (0.3, 0.04, 0.9, 0.7, 1) HOT 51 0 3200
192 H192 4.9 10243 5.89 × 108 (0.3, 0.04, 0.9, 0.7, 1) HOT 54 0 3200
96 H96 1.4 10243 6.86 × 107 (0.3, 0.04, 0.9, 0.7, 1) HOT 65 0 3200

1280 L1280 120 6403 5.99 × 1011 (0.27, 0.04, 0.9, 0.7, 1) GADGET2 49 0, 0.5, 1.0 600
500 L500 15 10243×2 8.24 × 109 (0.3, 0.045, 0.9, 0.7, 1) GADGET2 40 0, 0.5, 1.25, 2.5 3200
250 L250 7.6 5123 9.69 × 109 (0.3, 0.04, 0.9, 0.7, 1) ART 49 0, 0.5, 1.25, 2.5 3200
120 L120 1.8 5123 1.07 × 109 (0.3, 0.04, 0.9, 0.7, 1) ART 49 0, 0.5, 1.25, 2.5 3200
80 L80 1.2 5123 3.18 × 108 (0.3, 0.04, 0.9, 0.7, 1) ART 49 0, 0.5, 1.25, 2.5 3200

1000 L1000W 30 10243 6.98 × 1010 (0.27, 0.044, 0.79, 0.7, 0.95) ART 60 0, 0.5, 1.0, 1.25 3200
384 H384W 14 10243 3.80 × 109 (0.26, 0.044, 0.75, 0.71, 0.94) HOT 35 0 3200
384 H384Ωm 14 10243 2.92 × 109 (0.2, 0.04, 0.9, 0.7, 1) HOT 42 0 3200
120 L120W 0.9 10243 1.21 × 108 (0.27, 0.044, 0.79, 0.7, 0.95) ART 100 1.25, 2.5 3200
80 L80W 1.2 5123 2.44 × 108 (0.23, 0.04, 0.75, 0.73, 0.95) ART 49 0, 0.5, 1.25, 2.5 3200

Notes. The top set of five simulations is from the Warren et al. (2006) study. The second list of five simulations is of the same WMAP1 cosmology, but with different
numerical codes. The third list of five simulations is of alternate cosmologies, focusing on the WMAP3 parameter set. The HOT code employs Plummer softening,
while GADGET employs spline softening. The values of ε listed for the GADGET simulations are the equivalent Plummer softening; when calculating the spline
softening kernel, GADGET uses a value of 1.4ε. The force resolution of the ART code is based on the size of the grid cell at the highest level of refinement. Δmax is
the highest overdensity for which halo masses can be reliably measured.

& Tormen 1999; Sheth et al. 2001; Seljak & Warren 2004; Tinker
et al. 2005; Pillepich et al. 2010; Reed et al. 2009). The FOF
algorithm is a percolation scheme that makes no assumptions
about halo geometry, but may spuriously group distinct halos
together into the same object, confusing the comparison between
cluster observable theoretical results (White 2001; Tinker et al.
2008; Lukić et al. 2009). Additionally, previous calibrations
focus on only one value of the FOF linking length, l = 0.2,
and thus are not applicable to many mass observables. Galaxy
cluster studies and theoretical halo models benefit from a self-
consistently defined set of coupled mass and bias functions.

The bias of halos is determined by the relative abundance
of halos in different large-scale environments. Thus, theoretical
models for halo bias have been derived from the mass function
using the peak-background split (Bardeen et al. 1986; Cole &
Kaiser 1989; Mo & White 1996; Sheth & Tormen 1999; Sheth
et al. 2001). These models produce results that are reasonably
accurate but fail to reproduce in detail the bias of halos found
in numerical simulations (Jing 1998; Seljak & Warren 2004;
Tinker et al. 2005; Gao et al. 2005; Pillepich et al. 2010). Manera
et al. (2009) and Manera & Gaztanaga (2009) demonstrate that
using the peak-background split to calculate the bias of massive
halos from their mass function does not accurately match the
clustering as measured from their spatial distribution. In addition
to calibrating the functional form of the bias, we test the peak-
background split.

In Section 2, we summarize our list of simulations and the
numerical techniques for calculating bias. In Section 3, we
present our fitting formulae for large-scale bias, comparing
to previous works, and exploring any redshift evolution. In
Section 4, we use our results to test the peak-background split.
In Section 5, we summarize our results.

2. SIMULATIONS AND METHODS

Our simulation set spans a wide range in volume and mass
resolution in order to produce results that span nearly six decades
in mass, from M ∼ 1010 h−1 M� halos to massive clusters. The
set contains 15 distinct simulations that span local variations of

the concordance ΛCDM cosmology consistent with results from
cosmic microwave background (CMB) anisotropies (Spergel
et al. 2003; Dunkley et al. 2009). Three numerical codes
are represented in our set: the adaptive refinement technique
(ART; Kravtsov et al. 1997; Gottlöber & Klypin 2008), the
hashed oct-tree code (HOT; Warren et al. 2006), and the
hybrid tree-particle mesh code GADGET2 (Springel 2005).
Table 1 lists details of each simulation, including cosmological
parameters, force resolution, volume, and mass resolution.
Further details about the simulation set can be found in T08. For
one simulation, L1280, there are 49 independent realizations.
The L1280 simulations were utilized in the studies on the halo
mass function and bias relation of massive halos in Crocce et al.
(2006) and Manera et al. (2009), as well as in the analysis in
T08. The dark matter outputs of these simulations were kindly
supplied by R. Scoccimarro.

Crocce et al. (2006) point out that improper initial conditions
can result in errors in the resulting halo mass function and,
to a lesser extent, bias function for massive halos. These
errors are a product of starting the simulation at too low a
redshift while using first-order techniques for the initial particle
displacements and velocities. The L1280 simulations utilize
second-order perturbation theory to ameliorate these effects. In
T08, we performed multiple re-simulations of L1000W with
initial conditions set using the Zel’dovich approximation at
different redshifts. We found significant differences between the
mass functions measured in the L1000W run with Zel’dovich
initial conditions set at z = 30 and the mass function measured
in the L1280 run. However, using Zel’dovich initial conditions
at z = 60 for L1000W produces a mass function negligibly
different from the L1280 calculations.

Halos are identified in each simulation using the SO technique
outlined in T08. In brief, the code identifies density peaks in the
dark matter and grows spheres around them until the mean
interior density is some set multiple, Δ, of the background
density. Thus, the mass and radius of a halo are related by

MΔ = 4

3
πRΔρ̄m(z)Δ, (1)
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where ρ̄m(z) is the mean density of the universe at redshift z. In
our implementation of the SO algorithm, the spheres that contain
halos are allowed to overlap; so long as the center of one halo
is not contained within RΔ of another halo, the two halos are
considered distinct. Owing to small overlaps in the exteriors of
halos, a small fraction of the total mass in halos (∼0.7%) is
assigned to multiple halos and double counted. The SO method
of identifying halos makes the halo mass sensitive to the force
resolution of the simulation; if the density profile of a halo is
not properly resolved, the enclosed mass at a given radius will
be smaller. Column 10 in Table 1 lists the maximum value of Δ
for which reliable results could be obtained for each simulation.
Owing to the low spatial resolution of the L1280 simulations,
our analysis only utilizes these simulations for Δ = 200. For all
simulations, only halos with more than 400 particles are used.
This ensures that all halos are robustly identified and the halo
profiles are well sampled.

We define the bias of dark matter halos as the ratio of the halo
power spectrum to the linear dark matter power spectrum:

b2(k) = Ph(k)

Plin(k)
. (2)

We calculate the power spectrum of each simulation as follows.
The halos of each simulation are binned in a 2003 density mesh
using the cloud-in-cell technique, and the power spectrum is
computed through Fourier transformation. All power spectra
are shot-noise subtracted. Aliasing due to the cloud-in-cell grid
is removed through the deconvolution technique outlined in
Jing (2005). Although halo bias is scale dependent in the quasi-
linear and nonlinear regime, here we focus on the large-scale
bias, where b is independent of k. We calculate b2 as the average
over the 10 largest wavelength modes in the simulation. For
simulations with Lbox < 200 h−1 Mpc, nonlinearity has set in
at k � 10 × 2π/Lbox. For these simulations, we truncate our
average to the largest five modes. For the z = 2.5 outputs
of two simulations, L120W and L120, the power spectra do
not converge to a robust asymptotic value within this k-range,
thus we exclude these outputs from the analysis. For each
simulation, we calculate Ph(k) for eight jackknife subsamples
of the simulation, removing density fluctuations from one octant
of the box in each subsample. We use the jackknife subsamples
to estimate the error on b.

We also check these results against bias as defined by the halo
mass cross-power spectrum bhm = Phm/Plin. This measure does
not require a shot-noise correction, and it yields better statistics
when the halos become vary sparse.

We parameterize our results in terms of “peak height” in
the linear density field, ν = δc/σ (M), where δc is the critical
density for collapse and σ is the linear matter variance on the
Lagrangian scale of the halo, i.e., R = (3M/4πρ̄m)1/3, defined
as

σ 2(R) = 1

2π2

∫
P (k, z)Ŵ 2(k, R)k2dk, (3)

where P(k, z) is the linear power spectrum at redshift z and Ŵ is
the Fourier transform of the top-hat window function of radius R.
In all calculations, we use δc = 1.686. For reference, ν of 0.75,
1, 2, and 3 (log ν = [−0.12, 0.0, 0.30, 0.48])11 corresponds to
M of 2.9×1011, 2.8×1012, 1.2×1014, and 7.0×1014 h−1 M�,
respectively, for the L1000W cosmology at z = 0.

11 Throughout this paper, log indicates base-10 logarithm.

Figure 1. Upper panel: large-scale bias as determined by the ratio (Ph/Plin)1/2

for Δ = 200. Results from the smaller boxes are represented by the gray
circles. For these simulations, only measurements with less than 10% error
are shown to avoid crowding. The larger volume simulations are represented
by the colored symbols. Each point type indicates a different simulation. The
different colors, from left to right, go in order of increasing redshift from z = 0
to z = 2.5 (see Table 1 for the redshift outputs of each simulation). Like
colors between simulations imply the same redshift. For these large-volume
simulations, measurements with less than 25% errors are shown. Lower panel:
fractional differences of the N-body results with the fitting function shown in
the upper panel.

(A color version of this figure is available in the online journal.)

3. RESULTS

3.1. Models and Measurements at Δ = 200

Figure 1 shows bias as a function of ν for all simulations
in Table 1. In this figure, halos are defined with Δ = 200.
In the spherical collapse model, Δ ≈ 200 defines a radius
separating the virialized region and the region of continuing
infall in an Ωm = 1 universe (Lacey & Cole 1994; Eke et al.
1998). This overdensity is also close to the overdensity of
halos identified with the FOF algorithm with the typical linking
parameter of 0.2 (Davis et al. 1985). Thus, analytic models are
typically compared to numerical results using either Δ = 200
or FOF(0.2). In Figure 1, we compare our Δ = 200 results to
two current models for halo bias from the literature.

First, we compare these results to predictions based on
the spherical collapse (SC) model for the formation of dark
matter halos. In SC, halos collapse when the linear overdensity
associated with a peak in the density field crosses a critical
barrier δc independent of halo mass. Press & Schechter (1974)
used this model to derive an expression for the mass function of
dark matter halos. Using the peak-background split, which we
will describe in more detail in Section 4, Cole & Kaiser (1989)
and Mo & White (1996) derived a bias relation of the form

b(ν) = 1 +
ν2 − 1

δc

. (4)

However, the Press–Schechter mass function fails to repro-
duce the dark matter halo mass function found in simulations
(see, e.g., Gross et al. 1998; Lee & Shandarin 1999; Sheth &
Tormen 1999; Jenkins et al. 2001; Robertson et al. 2009). Thus,
it is not surprising that the bias function in Equation (4) also
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does not compare well to simulations (see, e.g., Jing 1998, 1999;
Sheth & Tormen 1999). In Figure 1, the SC model overpredicts
the bias in the range 1 � ν � 3, while underpredicting slightly
the bias for the lowest mass halos in our simulations.

Sheth & Tormen (1999, hereafter ST) generalized the ex-
pression for the Press–Schechter mass function and calibrated
the free parameters using numerical simulations. Sheth et al.
(2001, hereafter SMT) later refined this calculation, incorpo-
rating a “moving” barrier for the collapse criterion of halos
in which the critical density varies with the peak height as
motivated by the more physically realistic ellipsoidal collapse
model. Ma et al. (2010) extended this calculation further, incor-
porating non-Markovian processes in halo collapse. Using the
peak-background split once again, SMT derived an improved
expression for the bias of the form

b(ν) = 1 +
1√
aδc

[√
a(aν2) +

√
ab(aν2)1−c

− (aν2)c

(aν2)c + b(1 − c)(1 − c/2)

]
, (5)

where a = 0.707, b = 0.5, and c = 0.6. These parameters
describe the shape of the moving barrier. In Figure 1, the SMT
bias equation underpredicts the clustering of high-peak halos
while overpredicting the asymptotic bias of low-mass objects.
The SMT function is calibrated using FOF halos, thus the choice
of Δ with which to compare is somewhat arbitrary, but it can
be seen that the SMT function and our results will not agree at
any overdensity: SMT bias at low ν is too high and is too low
at high ν. When increasing (decreasing) Δ, the bias at all ν can
only increase (decrease).

The bias formulae of ST and SMT have been shown before
to be inaccurate at low masses (Seljak & Warren 2004; Tinker
et al. 2005; Gao et al. 2005; Pillepich et al. 2010). Updated
fitting functions have sometimes used the functional form of
ST (Mandelbaum et al. 2005) or SMT (Tinker et al. 2005) with
new parameters chosen to match numerical data, while others
have proposed entirely new functional forms (e.g., Seljak &
Warren 2004; Pillepich et al. 2010). Our tests show that the SMT
function does not yield optimal χ2 values when comparing to
our numerical results. We therefore introduce a similar but more
flexible fitting function of the form

b(ν) = 1 − A
νa

νa + δa
c

+ Bνb + Cνc. (6)

Equation (6) scales as a power law at the highest masses, flattens
out at low masses, and asymptotes to b = 1 at ν = 0, provided
a > 0.

A convenient property of the SC, ST, and SMT functions
is that they are normalized such that the mean bias of halos
is unity. Thus, if one adopts the halo model ansatz that all
mass is contained within halos, dark matter is not biased against
itself. Numerically calibrated bias functions in the literature do
not obey this constraint (Jing 1998, 1999; Tinker et al. 2005;
Seljak & Warren 2004; Pillepich et al. 2010). When fitting for
the parameters of Equation (6), we enforce this constraint by
requiring that our bias function obey the relation∫

b(ν)f (ν)dν = 1, (7)

where f (ν) is the halo mass function, once again expressed in
terms of the scaling variable ν. At each Δ, we use the halo mass

Table 2
Parameters of Bias Equation (6) as a Function of Δ

Parameter f (Δ)

A 1.0 + 0.24y exp[−(4/y)4]
a 0.44y − 0.88
B 0.183
b 1.5
C 0.019 + 0.107y + 0.19 exp[−(4/y)4]
c 2.4

Note. y ≡ log10 Δ.

functions listed in Appendix C of T08, which are normalized
such that the mean density of the universe is obtained when
integrating over all halo masses at z = 0.12

In T08, we found that the mass function is universal at z = 0
over the range of cosmologies explored. However, the mass
function at higher redshifts deviates systematically from the
z = 0 results. In Figure 1, we have included the results from
all redshifts. Although the evolution of f (σ ) from z = 0 to
z = 1 is clear in the T08 results, the bias of these halos
does not show significant evolution with redshift. To obtain
the parameters of Equation (6), we minimize the χ2 using the
jackknife errors described in the previous section. The best-fit
parameters for the Δ = 200 data, listed in Table 2, yield a χ2

per degree of freedom (hereafter χ2
ν ) of 1.9 when incorporating

all data from all redshifts. This high value of χ2
ν is driven by

the small error bars on the L1280 results at z = 0. With 49
realizations, the error bars are ∼1% at the low-particle limit, thus
the few percent offset between the L1280 results and those of the
remaining simulations yields a high χ2

ν . Removing the L1280
results (without refitting) yields χ2

ν = 1.01. The low spatial
resolution of the L1280 simulations is a possible source of error
in the bias results. Refitting with only the z = 0 results does
not change the values of the best-fit parameters or change χ2

ν .
This implies that the evolution of bias with redshift is extremely
weak between 0 � z � 2.5, if it evolves at all. Simulation to
simulation, the situation is not definitive. The L500 simulations
show an increased amplitude in the bias of ∼5% between z = 0
and z = 1.25, but the L1000W simulation is consistent at all
redshifts. Regardless, any evolution in the bias function at fixed
ν is significantly smaller than the evolution in the mass function.

3.2. Large-scale Bias as a Function of Δ

The best-fit parameters of Equation (6) scale smoothly with
Δ, allowing us to obtain fitting functions for these parameters as
a function of log Δ. The functions that yield the parameters of
Equation (6) for 200 � Δ � 3200 are listed in Table 2. Using
these functions, the integral constraint in Equation (7) is satisfied
to better than 1% for every value of Δ considered. If required,
higher precision can be obtained if five of the six parameters are
taken from Table 2 and the last is solved for numerically.

A comparison between our numerical results and fitting
functions for four values of Δ are shown in Figure 2. To avoid
crowding and scatter, in each panel we only plot data points
with fractional errors less than 10%. Figures 2(b)–(d) compare
the results for Δ = 400, 800, and 1600 to the Δ = 200 fitting
function (shown against the Δ = 200 data from Figure 2(a)). As
Δ increases, bias increases at all mass scales. At high masses this

12 The normalized mass functions in T08 are expressed in terms of 1/σ rather
than ν. For convenience, we rewrite this function in terms of ν in Equation (8)
and give new mass function parameter values in Table 4.
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Figure 2. Large-scale bias as determined by the ratio (Ph/Plin)1/2 for four values
of Δ. The solid line in each panel represents Equation (6) with the Δ-dependent
parameters listed in Table 2. The dotted curve in panel (a) is the bias formula
of SMT. The dashed curve in panels (c) and (d) is the Δ = 200 results (i.e., the
solid curve in panel (a)).

Table 3
χ2

ν Values of the b(ν) Fits

Δ χ2/ν

200 1.01/1.94
300 1.33
400 1.08
600 1.34
800 1.19
1200 1.22
1600 1.14
2400 1.06
3200 1.08

Note. For Δ = 200, the second value of χ2
ν

includes the L1280 simulations.

is expected; as Δ increases, a fixed set of halos will have lower
masses but the same clustering properties, essentially shifting
them along the ν-axis. At low masses, the amplitude of the
bias curve also monotonically increases with Δ, owing to the
substructure within high-mass halos that become distinct objects
as RΔ decreases. Because these new low-mass halos are in the
vicinity of high-mass objects, they have significant clustering.13

Table 3 shows the χ2
ν values for each value of Δ. The fit is near

χ2
ν ≈ 1 at all Δ, indicating that the fit is adequate to describing

the data even though we have combined all the simulation
outputs in the fit (i.e., all cosmologies and all redshifts).

13 In principle, this makes our results sensitive to the spatial resolution of our
simulations beyond simply resolving the halo density profiles properly. If
subhalos are not resolved in some subset of our simulations, the change in bias
for low-ν halos will be underpredicted. Our criterion for including simulations
in our analysis is that halo density profiles are properly resolved, not that
substructure is properly resolved. However, the fact that bias monotonically
increases with Δ at low ν is indicative that we are including these “revealed”
subhalos.

Figure 3. (a) The Δ = 200 bias function in the high-ν regime. The points
with error bars represent our large-volume simulations at the redshifts listed
in Table 1. Only points with fractional errors less than 25% are shown. The
different colors, from left to right, go in order of increasing redshift: (red, green,
yellow, blue, cyan) = (0.0, 0.5, 1.0, 1.25, 2.5). Like colors between simulations
imply the same redshift. The dotted line is the spherical collapse prediction.
The dashed line is the SMT function. The lower panel shows the fractional
difference with respect to Equation (6), δb = bNbody − bfit. (b) Same as (a), but
now using the bias defined by the ratio of the Phm/Plin(k). Results are shown for
the L1000W simulation. Colors represent the same redshifts as in panel (a). (c)
Bias of halos identified using the FOF algorithm with linking length 0.2. Bias
is calculated from Equation (2). Results are shown for the L1000W simulation.
Different colors match to different redshifts as before. The dotted curve in this
Figure is the fitting function of Pillepich et al. (2010), which is calibrated on
FOF(0.2) halos.

(A color version of this figure is available in the online journal.)

3.3. Bias of High-ν Halos

The spherical collapse model is defined by a threshold for
collapse that is independent of halo mass. However, peaks in the
linear density field become increasingly elliptical and prolate
at low-ν, delaying collapse. Thus, in this mass regime, the
barrier in the ellipsoidal collapse model is significantly higher
than the constant δc assumed in spherical collapse calculations.
As a result, collapsed low-mass halos reside in higher density
environments, making them less abundant and more biased.
At high ν, the ellipsoidal collapse barrier asymptotes to the
spherical δc value, and these two models should thus converge
at high ν. However, the numerically calibrated barrier used in
the SMT fit asymptotes to a value lower than the spherical
collapse δc in order to produce the abundance of high-mass halos
(see the discussion in Robertson et al. 2009). Consequently, the
clustering of high-ν halos in the SMT model is lower than the
spherical collapse prediction.

In Figure 3(a), we compare our fitting function to the formulae
of the SMT and SC models for halos with ν > 1.5. We also
show the bias results from L500 and L1000W for four different
redshifts and from L1280 for two redshifts. We focus on these
simulations because they are the largest in our suite.14 These are
the same data presented in Figure 1, but here we are focusing on
the high-ν regime. At ν ∼ 2, our simulation results are in good
agreement with the SMT function, but at higher ν, our results
rise above the SMT function and meet the spherical collapse
prediction at ν � 4.

At high redshift (z ∼ 10), Cohn & White (2008) found that
the bias of ν ∼ 3 halos was better described by the SC models

14 We do not include the 768 h−1 Mpc HOT simulation in this section because
the results at high ν are possibly biased due to numerical issues. See the
discussion in Appendix A of T08. We do include H768 in all fitting, but both
the mass function and bias relation deviate from the mean results at high
masses.
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rather than SMT. However, two other recent studies of halo bias
have concluded in favor of the SMT model for high-peak halos.
In contrast to Cohn & White (2008), Reed et al. (2009) argue
that the clustering of high-ν halos at 10 < z < 30 in their
simulations is better described by the SMT model. They claim
that the bias measurements of Cohn & White (2008) are in error
because the bias is calculated at r = 1.5 h−1 Mpc, where the
bias is scale dependent. To correct for this, Reed et al. (2009)
use a fitting function to extrapolate the translinear correlation
function out to linear scales. Using this technique, they find
that SMT bias is a better fit than spherical collapse. Reed et al.
(2009) are not able to calculate error bars for their bias values,
and the matter variance over the total volume probed in their
simulations is ∼12% at the redshifts for which they obtain their
results;15 thus, sample variance is still a concern. The numerical
results of Pillepich et al. (2010) are also consistent with SMT
at 2 � ν � 3 and deviate somewhat at higher masses. They
use FOF halos with a linking length of 0.2 times the mean
interparticle separation, and they calculate halo bias by the ratio
of the halo–matter power spectrum, Phm(k), to the matter power
spectrum. Gao et al. (2005) and Angulo et al. (2008) use the
halo–halo correlation function to determine the bias of FOF(0.2)
halos, with results similar to Pillepich et al. (2010).

In Figure 3(a), our simulations prefer a model that is inter-
mediate between SC and SMT. But in Figure 3(b) we explore
the possible systematics involved in our estimate of b(ν). Here,
we use Phm(k) to determine b(ν) from L1000W. Because shot
noise is no longer a concern, this statistic allows us to extend our
bias measurements to higher masses at a given redshift output.
Although the errors at high ν are large, the z = 0 results track
our fit at all ν, demonstrating that the these results are not due
to redshift evolution (and a lack of z = 0 data at ν > 2). The
results from other redshifts are also in agreement with the fit
and with the z = 0 results using Phm(k).

The last systematic to be tested is the choice of halo-finding
algorithm. In Figure 3(c), we plot the bias of halos in the
L1000W simulation that have been identified with the FOF(0.2)
finder. The halos were defined using the same algorithm and
linking length used by both Reed et al. (2009) and Pillepich et al.
(2010). Although the difference with Δ = 200 is small, there is
a definite offset between the FOF(0.2) results and our Δ = 200
fit. At ν ∼ 3, the SMT function is a reasonable description of the
data. At higher ν, the numerical results increase faster than the
ν2 scaling of SMT, but the errors are too large to see a significant
difference with SMT. The empirical fit determined by Pillepich
et al. (2010) is also a good fit to our FOF(0.2) data. Their fit is
consistent with SMT at ν ∼ 2–3 and tends higher at larger ν. As
discussed in T08 and Lukić et al. (2009), a significant fraction of
FOF halos are actually two distinct density peaks linked together
by the FOF algorithm. This linking increases the abundance of
massive FOF halos relative to the abundance of SO halos and
reduces the bias. The halo bias of the FOF(0.168) halo catalogs
of Manera et al. (2009) agree with the Δ = 200 results for the
L1280 results.

3.4. NFW Scaling Between Values of Δ

One method of obtaining halo statistics at various values of
Δ is to assume that halos are described by the density profile of
Navarro et al. (1996, hereafter NFW) and calculate the change
in mass between the desired Δ and some fiducial value at which

15 The matter variance of a 1 h−1 Mpc cube at z = 10 is 39%, but this is
reduced by

√
11 due to the 11 realizations they have of this box.

Figure 4. Fractional difference between the bias from fitting functions and the
bias obtained from rescaling the Δ = 200 fitting function to higher overdensities
assuming NFW profiles and the concentration–mass relation of Zhao et al.
(2009).

the mass function or bias relation is calibrated (i.e., Hu &
Kravtsov 2003). In T08 we showed that this procedure leads
to significant errors in the inferred mass function at M < M∗,
and the abundance of high-mass objects is sensitive to the model
for halo concentrations used. In Figure 4, we test this procedure
on the bias function. The curves represent the ratio between the
bias obtained using the fitting functions of Table 2 and the bias
obtained by taking the Δ = 200 bias function and rescaling
it to higher overdensities. We assume the concentration–mass
relation of Zhao et al. (2009) for all calculations, noting that the
results on the high-mass end depend on the model used. Models
that predict a lower concentration for cluster-sized halos, such
as Bullock et al. (2001), yield a much stronger deviation from
the N-body results. Scaling the masses from one Δ to another Δ
can only result in a horizontal shift of the bias–mass relation;
halos that were substructures at low Δ and revealed at high Δ are
not taken into account. Low-mass substructures in high-mass
halos that are “revealed” as host halos when Δ increases will
increase the mean bias of these objects. This is why the rescaled
bias function underpredicts halo bias at low ν.

At the high-mass end, two effects alter the agreement between
the measured bias and the rescaled bias. For the same object,
the difference in halo mass between two values of Δ depends
on the density profile of the halo. Thus, at a given M200, scatter
in the concentration–mass relation creates a distribution of halo
masses at higher or lower Δ. Due to the steepness of the mass
function at ν � 1, more low bias halos are scattered up to higher
ν than high-bias halos are scattered down. The calculation in
Figure 4 assumes only the mean c(M) relation. Scatter accounts
for half of the discrepancy. The rest can be accounted for by the
assembly bias of halos, the effect that halo properties correlate
with large-scale environment (see, e.g., Sheth & Tormen 2004;
Gao et al. 2005; Gao & White 2006; Wechsler et al. 2006).
At ν � 1, more concentrated halos are less clustered than on
average of the same mass. Thus, when scaling halos of the
same M200 to higher MΔ, the value of MΔ depends on c and thus
depends on bias such that higher values of MΔ are less clustered.
Using the result from Wechsler et al. (2006) that a 1σ deviation
in log c yields a ∼13% deviation from the mean clustering for
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Table 4
Parameter of the Halo Mass Function, Equation (8)

Δ α β γ φ η

200 0.368 0.589 0.864 −0.729 −0.243
300 0.363 0.585 0.922 −0.789 −0.261
400 0.385 0.544 0.987 −0.910 −0.261
600 0.389 0.543 1.09 −1.05 −0.273
800 0.393 0.564 1.20 −1.20 −0.278
1200 0.365 0.623 1.34 −1.26 −0.301
1600 0.379 0.637 1.50 −1.45 −0.301
2400 0.355 0.673 1.68 −1.50 −0.319
3200 0.327 0.702 1.81 −1.49 −0.336

massive halos, scatter and assembly bias combined bring the
rescaled bias function into agreement with the fitting functions
at ν � 1.

4. TESTING THE PEAK-BACKGROUND SPLIT

The mass function in Appendix C of T08 is written as a
function of σ . To match with our parameterization of the bias
function in Equation (6) and to facilitate the peak-background
split, we rewrite this function in terms of peak height ν. The
original T08 function, g(σ ), is related to the new function by
g(σ ) = νf (ν), where

f (ν) = α[1 + (βν)−2φ]ν2ηe−γ ν2/2. (8)

Table 4 lists the values of the five parameters of Equation (8)
for each value of delta.

The mass function parameters in Table 4 are set to match
the z = 0 numerical results from T08. To model the redshift
evolution of the Δ = 200 mass function, the parameters have
the following redshift dependence:

β = β0 (1 + z)0.20 , (9)

φ = φ0 (1 + z)−0.08 , (10)

η = η0 (1 + z)0.27 , (11)

γ = γ0 (1 + z)−0.01 , (12)

where β0, etc., are the values of the parameter at z = 0 as listed in
Table 4. The value of α is obtained through the integral constraint
in Equation (7). The redshift-dependent fitting function is
accurate to ∼5% at ν > 0.6 relative to the original T08 function.
As discussed in T08, the rate of change of the mass function
decreases as z increases, thus we recommend using z = 3 in the
above equations to obtain the mass function at z > 3.

Theoretical models for the halo mass function assume a
one-to-one correspondence between peaks in the initial density
field and collapsed objects that form at later times. The peak-
background split obtains the bias of halo through the change in
the mass function (the distribution of density peaks) with the
large-scale density field (the background). We implement the
peak-background split under the common assumptions of
the excursion set formalism, such as that the smoothing mass
scale (for calculating σ (M) in Equation (3)) is the same as the
mass in the collapsed halo (see Zentner 2007 for a review).

Figure 5. Comparison of halo bias calibrated from our numerical simulations,
Equation (6), with results from the peak-background split, Equation (15). At
Δ = 200, the peak-background split calculation is ∼20% high/low and low/

high ν. As Δ increases, the residuals at ν > 1 become smaller, while the residuals
at ν < 1 become larger.

(A color version of this figure is available in the online journal.)

Following ST, we define the peak height, ν1, relative to the
background, ν0, as

ν2
10 ≡ [δ1 − δ0]2

σ 2
1 − σ 2

0

≈ ν2
1

(
1 − 2

δ0

δ1

)
, (13)

where on the right-hand side we have only kept the leading
order terms. We Taylor expand ν10f (ν10)/ν1f (ν1) to calculate
the Lagrangian halo peak-background split δL

h (ν1|δ0). Using
Equation (8), the overabundance of halos relative to the mean
in Lagrangian space is

δL
h (ν1|δ0) ≈

[
γ ν2

1 − (1 + 2η) +
2φ

1 + (βν1)2φ

]
δ0

δ1
≡ bL(ν1)δ0.

(14)
This function is similar to Equation (11) of Sheth & Tormen
(1999). The Eulerian bias is related to the Lagrangian bias by
bE ≡ 1 + bL. If we set δ1 = δc, the Eulerian bias is then

b(ν) ≈ 1 +
γ ν2 − (1 + 2η)

δc

+
2φ/δc

1 + (βν)2φ
. (15)

Figure 5 compares the peak-background split bias for-
mula, Equation (15), to our N-body calibrated results using
Equation (6). The peak-background split calculation does a rea-
sonable job modeling the relative change in bias with Δ; as the
normalization of the mass function is lowered by increasing Δ,
the amplitude of the bias function over the mass range probed
increases. However, at all overdensities, the peak-background
split overestimates the bias of low-mass halos. For low overden-
sities, Δ � 600, Equation (15) overestimates the bias of halos
above the nonlinear mass threshold. For higher overdensities, the
N-body and analytic results appear consistent for high-peak ha-
los, although the two curves must diverge eventually, as b ∼ ν2

in the peak-background split and b ∼ ν2.4 in our numerical fit.
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By definition, Equation (15) satisfies the integral constraint in
Equation (7), as does the numerical fit; at log ν < −0.5, the
bias from Equation (6) is higher than the peak-background split
calculation.

At high masses and low overdensities, our results are consis-
tent with those found in Manera et al. (2009). Using FOF-based
halos, they find that employing the peak-background split on
the mass function derived directly from their halo catalogs un-
derpredicts the bias of high-peak halos. They find this result for
three different values of the FOF linking parameter, 0.2, 0.168,
and 0.15. As the linking length is reduced—which is analo-
gous to increasing the halo overdensity Δ—the discrepancy is
reduced but never completely goes away. From T08, the linking
length best associated with Δ = 1600 is 0.1, significantly lower
than the three values used by Manera et al. (2009). Given the
trends in their results and in Figure 5, we predict that the peak-
background split will yield consistent results at l � 0.12, but
only at the high-mass end of the spectrum.

5. SUMMARY AND DISCUSSION

We have presented a series of calibrated fitting functions
for large-scale halo bias. The fitting functions are designed to
yield the bias factor for any value of Δ within the calibrated
range. These functions are normalized such that, when used in
concert with the normalized mass functions of T08 (given by
Equations (8)–(12) in this paper), the overall bias of dark matter
is unity. We find a ∼6% scatter from simulation to simulation.
Combined with the 5% error in the T08 mass function, this
level of uncertainty has a non-negligible impact on the precision
with which cosmological parameters can be constrained from
cluster abundance studies; the dark energy figure of merit
(Albrecht et al. 2006) is reduced by 25%–50%, depending on
the details of the survey (Cunha & Evrard 2009; Wu et al.
2009). More importantly, T08 and this study focus exclusively
on cosmological parameters in which the vacuum energy density
is constant with redshift. More study is required to determine if
the halo bias function is universal with variations in universal
expansion and growth history induced by dark energy. For
cluster studies, where the primary concern is the abundance
of massive objects, a series of large-volume simulations similar
to L1000W are required to address this uncertainty. To isolate
the effects of dark energy in both the mass function and the bias
function, using the same initial phases with different dark energy
equations of state would eliminate sample variance, which is a
concern even for h−1 Gpc simulations.

Within the precision of our data set, the numerical results
do not show evidence for significant evolution of bias with
redshift. Any evolution must be at the �5% level over our
redshift baseline. This finding contrasts with our results from
the mass function; in T08 we demonstrated that the SO mass
function evolves by up to ∼50% from z = 0 to z = 2.5.
This evolution is more pronounced with higher overdensity. If
the abundance of dark matter halos is connected to the bias of
halos—as is assumed in the peak-background split—one would
assume that b should increase at fixed ν as redshift increases.
To the statistical precision of our data, however, halo bias can
be modeled by a single, redshift-independent function.

Although the absolute predictions of the peak-background
split fail to reproduce our numerical results in detail, this method
reasonably tracks the change in the bias function with Δ. Thus,
we can gain insight from using the peak-background split on
the mass function at various redshifts to see how it changes
under the peak-background ansatz. In T08, the evolution in

the mass function is mostly encompassed by a change in the
overall normalization of νf (ν) (cf. Figure 6 in T08), with a
slightly stronger evolution for ν � 1 halos. A change in the
overall abundance of halos does not induce a change in their
clustering. Thus, employing the peak-background split on the
redshift-dependent mass function for Δ = 200 at z = 1.25
yields a bias function that is nearly identical to the z = 0 peak-
background split function at high ν and is only ∼5% higher
at ν � 0.4.

We have paid significant attention to the bias of halos at ν � 2,
which corresponds to the peak height for galaxy clusters. Our
Δ = 200 halo catalogs disfavor a bias function with an amplitude
as low as SMT. This result is robust to any choice of statistic with
which to calculate the bias. The numerical results of Reed et al.
(2009) and Pillepich et al. (2010) find good agreement with
SMT at these scales, but these results are based on FOF(0.2)
halos. The known problem of linking distinct objects in the
FOF algorithm would reduce bias at fixed mass because two (or
more) objects with intrinsically lower bias are being counted as
one more massive object. In addition, as pointed out in Lukić
et al. (2009), the mean ratio between FOF halo mass and SO
halo mass depends on concentration even for unbridged samples
of halos, so this will also affect the relative bias between the two
mass definitions in a non-trivial manner. In our simulations,
Δ = 200 and FOF(0.2) do not agree. At ν = 3, our FOF(0.2)
results appear to be in agreement with the SMT function as well
as the fitting function of Pillepich et al. (2010).

In a general sense, the peak-background split does achieve
marked success; the first-order derivation calculated here is
accurate to �20% and correctly predicts the change in bias
with Δ. The non-Markovian calculation of Ma et al. (2010)
is accurate to �20% as well. There are several possibilities
in explaining the differences between the theory and N-body
results. For massive halos, a first-order expansion of the peak-
background split may not be sufficient. However, Manera et al.
(2009) and Manera & Gaztanaga (2009) demonstrate that higher
order terms do increase the accuracy of the calculation at high
masses, but decreases it at lower masses. The growth of low-
mass halos in overdensities is truncated due to the presence of
nearby, high-mass objects (Wechsler et al. 2006; Wang et al.
2007; Dalal et al. 2008; Hahn et al. 2009). Our implementation
of the peak-background split assumes that the local peak
corresponding to the collapse threshold is δ1 = δc = 1.686,
ignoring any environmental effects on the collapse of dark
matter halos. Alternatively, as discussed in Manera et al. (2009),
it is not clear that the mass that enters into the calculation of the
peak height, δc/σ (M), should be the same mass of the object
that eventually collapses. The mass contained within the peak
does not completely map onto the mass within the collapsed
halo (Dalal et al. 2008). It remains to be seen whether a more
robust implementation of the peak-background split model, in
which the Taylor expansion is replaced with a more rigorous
treatment, can reconcile the differences between theory and
numerical results, or if the peak-background split fails at a more
fundamental level. More work is required to isolate the failures
of the model and bring our theoretical understanding of the
formation of dark matter halos into agreement with the ever-
increasing precision of numerical simulations.
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