Void regions of the Universe offer a special environment for studying
cosmology and galaxy formation, which may expose weaknesses in our
understanding of these phenomena. Although galaxies in voids are observed to be
predominately gas rich, star forming and blue, a sub-population of bright red
void galaxies can also be found, whose star formation was shut down long ago.
Are the same processes that quench star formation in denser regions of the
Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy
Redshift Survey, to those from a galaxy formation model built on the Millennium
Simulation. We show that a global star formation suppression mechanism in the
form of low luminosity "radio mode" AGN heating is sufficient to reproduce the
observed population of void early-types. Radio mode heating is environment
independent other than its dependence on dark matter halo mass, where, above a
critical mass threshold of approximately M_vir~10^12.5 M_sun, gas cooling onto
the galaxy is suppressed and star formation subsequently fades. In the
Millennium Simulation, the void halo mass function is shifted with respect to
denser environments, but still maintains a high mass tail above this critical
threshold. In such void halos, radio mode heating remains efficient and red
galaxies are found; collectively these galaxies match the observed space
density without any modification to the model. Consequently, galaxies living in
vastly different large-scale environments but hosted by halos of similar mass
are predicted to have similar properties, consistent with observations.Comment: 6 pages, 3 figures, accepted MNRA