179 research outputs found

    Multicentric Castleman's disease as a cause for unclear febrile episodes in a 55-year-old HIV-infected man

    Get PDF
    Our case illustrates the difficulties involved in diagnosing multicentric Castleman's disease (MCD) in a human immunodeficiency virus-infected man with febrile episodes and malaise. In the absence of well-established treatment protocols, we have chosen a new treatment algorithm with rituximab, etoposide, and valganciclovir, which led to the remission of clinical symptoms. Yet, we advocate focused exploration for MCD in immunosuppressed patients with unclear febrile episodes, as recent advances in treatment are promisin

    Label-free nanoscopy enabled by coherent imaging with photonic waveguides

    Get PDF
    SPIE Article-Sharing Policies https://www.spiedigitallibrary.org/article-sharing-policiesIn this project it was found that Fourier ptychographic microscopy can be improved far beyond its conventional limits via waveguide-based optical systems. Extensive in silico studies showed that images obtained on highrefractive index material waveguide chips in conjunction with hyperspectral illumination light and finely designed waveguide geometries can be combined via a modified phase-retrieval algorithm to yield a resolution below 150 nm

    A Universal Scaling Law for Jets of Collapsing Bubbles

    Full text link
    Cavitation bubbles collapsing and rebounding in a pressure gradient grad(p) form a "micro-jet" enveloped by a "vapor jet". This letter presents unprecedented observations of the vapor jets formed in a uniform gravity-induced grad(p), modulated aboard parabolic flights. The data uncovers that the normalized jet volume is independent of the liquid density and viscosity and proportional to zeta=grad(p)*R0/p, where R0 is the maximal bubble radius and p is the driving pressure. A derivation inspired by "Kelvin-Blake" considerations confirms this law and reveals its negligible dependence of surface tension. We further conjecture that the jet only pierces the bubble boundary if zeta>0.0004.Comment: 4 page letter, 4 figure

    Impact of duration of chest tube drainage on pain after cardiac surgery.

    Get PDF
    OBJECTIVE: This study was designed to analyze the duration of chest tube drainage on pain intensity and distribution after cardiac surgery. METHODS: Two groups of 80 cardiac surgery adult patients, operated on in two different hospitals, by the same group of cardiac surgeons, and with similar postoperative strategies, were compared. However, in one hospital (long drainage group), a conservative policy was adopted with the removal the chest tubes by postoperative day (POD) 2 or 3, while in the second hospital (short drainage group), all the drains were usually removed on POD 1. RESULTS: There was a trend toward less pain in the short drainage group, with a statistically significant difference on POD 2 (P=0.047). There were less patients without pain on POD 3 in the long drainage group (P=0. 01). The areas corresponding to the tract of the pleural tube, namely the epigastric area, the left basis of the thorax, and the left shoulder were more often involved in the long drainage group. There were three pneumonias in each group and no patient required repeated drainage. CONCLUSIONS: A policy of early chest drain ablation limits pain sensation and simplifies nursing care, without increasing the need for repeated pleural puncture. Therefore, a policy of short drainage after cardiac surgery should be recommended

    Super-condenser enables labelfree nanoscopy.

    Get PDF
    Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines coherent imaging techniques with waveguide microscopy to realize a super-condenser featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed Si3N4 waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 μm2 in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval algorithm two-fold: firstly, the directionality of the illumination wave vector is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We test the method in simulations and in experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm. While the generated Fourier ptychography reconstructions are found to be prone to image artefacts, an alternative coherent imaging method, rotating coherent scattering microscopy (ROCS), is found to be more robust against artefacts but with less achievable resolution

    Numerical simulation of a collapsing bubble subject to gravity

    Get PDF
    © 2016 AIP Publishing LLC. The present paper focuses on the simulation of the expansion and aspherical collapse of a laser-generated bubble subjected to an acceleration field and comparison of the results with instances from high-speed videos. The interaction of the liquid and gas is handled with the volume of fluid method. Compressibility effects have been included for each phase to predict the propagation of pressure waves. Initial conditions were estimated through the Rayleigh Plesset equation, based on the maximum bubble size and collapse time. The simulation predictions indicate that during the expansion the bubble shape is very close to spherical. On the other hand, during the collapse the bubble point closest to the bottom of the container develops a slightly higher collapse velocity than the rest of the bubble surface. Over time, this causes momentum focusing and leads to a positive feedback mechanism that amplifies the collapse locally. At the latest collapse stages, a jet is formed at the axis of symmetry, with opposite direction to the acceleration vector, reaching velocities of even 300 m/s. The simulation results agree with the observed bubble evolution and pattern from the experiments, obtained using high speed imaging, showing the collapse mechanism in great detail and clarity
    corecore