2,207 research outputs found

    Cross-Promotion in Social Media: Choosing the Right Allies

    Get PDF
    This paper investigates the strategic use of cross-promotion for content producers in social media. In particular, we study how a producer chooses other producers to cross-promote so as to maximize the expected benefits of them cross-promoting him/her in return. Theories on homophily effect and social influence suggest that cross-promoted producers are more likely to cross-promote the initiator in return when they are in the similar categories or share more common friends and when the initiator has higher status. However, the cross-promotion from producers of different categories and social groups (i.e., share fewer common friends) tend to benefit the initiator more. The benefits also increase as the status of the initiator increases. We collected a panel of data consisting of 27,356 producers’ profile and status information, content categories, and their cross-promotion activities over a period of two months from YouTube. To test our hypotheses, we first employ a cox proportional hazard model to estimate the probability of cross-promotion in return. Then, we use a difference-in-differences method with panel fixed effects to evaluate the effect of cross-promotion in return on the initiator. Our results strongly support our hypotheses and provide valuable insights for both content producers and social media platforms

    Heightened expression of MICA enhances the cytotoxicity of NK cells or CD8+T cells to human corneal epithelium in vitro

    Get PDF
    BACKGROUND: Major-histocompatibility-complex class I-related chain A (MICA) antigens are the ligands of NKG2D, which is an activating or coactivating receptor expressed on human NK cells and CD8(+)T cells. We sought to determine whether MICA expression in human corneal epithelium (HCE) could affect the cytotoxicity mediated by NK cells or CD8(+)T cells. METHODS: Cell cultures of HCE were harvested from human donor eyes. Flow cytometric analysis and ELISA was performed to determine the levels of MICA expression on HCE. Then, HCE was transfected with a lentivirus vector expressing MICA and GFP. Flow cytometric analysis, RT-PCR, western blot and ELISA were performed to check the levels of MICA expression. For cytotoxicity testing, allogeneic NK cells and CD8(+)T cells were isolated from peripheral blood mononuclear cells of healthy volunteers by magnetic cell sorting. The cytolytic activity of NK cells and CD8(+)T cells was assessed against MICA-transfected HCE (NK cells: E:T ratio = 3:1; CD8(+)T cells: E:T ratio = 10:1) using the nonradioactive cytotoxicity detection kit lactate deshydrogenase. RESULTS: Surface expression of MICA on corneal epithelium was identified at a low level. A cell line of stable human MICA-transfected corneal epithelium was successfully established. Heightened expression of MICA on HCE was found to promote the cytotoxicity mediated by NK cells or CD8(+)T cells, which could be blocked by an anti-MICA antibody. CONCLUSION: MICA molecules may contribute to cytotoxic responses mediated by activated immune effector cells in corneal epithelium immunity

    Optimizing Instructional Design and Business English Teaching Using the BEICF Conceptual Framework in Universities in Zhejiang, China

    Get PDF
    This paper provides a detailed introduction to the current situation and short-comings of instructional design and business English teaching in Chinese universities in Zhejiang. It draws on a BEICF conceptual framework from the theory of MBO in management, and analyzed data from the teaching experiment of experimental group with BEICF conceptual framework and control group. This paper shows how instructional design and business English teaching with BEICF conceptual framework different from the current teaching practices and the achievement it has reached. Although with some challenges, it offers solutions to the short-comings of current business English teaching in Chinese universities in Zhejiang

    Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics

    Get PDF
    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain wave are considered using an ensemble of high-resolution (essentially LES) wave-breaking calculations. A turbulent kinetic energy budget for the wave shows that the turbulence production is almost entirely due to the mean shear. Most of the production is at the top of the leeside shooting ow, where the mean- ow Richardson number is persistently less than 0:25. Computation of the turbulent heat and momentum uxes shows that the dissipation of mean- ow wave energy is due primarily to the momentum uxes. The resulting drag on the leeside shooting ow leads to a loss of mean ow Bernoulli function as well as a cross-stream PV ux. The dependence of both the resolved-scale and subgrid turbulent uxes on the grid spacings is examined by computing a series of ensembles with varying grid spacings. The subgrid parameterization is shown to produce an overestimate of the PV ux at low grid resolution. The generation of gravity waves by coastal heating gradients is explored using linear theory calculations and idealized numerical modeling. The linear theory for ow without terrain shows that the solution depends on two parameters: a nondimensional coastal width L and a nondimensional wind speed U. For U 6= 0 the solution is composed of three distinct wave branches. Two of these branches correspond to the no-wind solution of Rotunno, except with Doppler shifting and dispersion. The third branch exists only for U 6= 0 and is shown to be broadly similar to ow past a steady heat source or a topographic obstacle. The relative importance of this third branch is determined largely by the parameter combination U=L. The e ect of terrain is explored in the linear context using an idealized linear model and associated diagnostic computations. These results are then extended to the nonlinear problem using idealized nonlinear model runs

    A 100-m-Scale Modeling Study of a Gale Event on the Lee Side of a Long Narrow Mountain

    Get PDF
    In this study, a gale event that occurred on the lee side of a long narrow mountain was investigated, together with the associated mountain flows, using a realistic-case large-eddy simulation (LES) that is based on the Weather Research and Forecasting Model. The mountain is located on the southeastern Tibetan Plateau, where approximately 58 gales occur annually, mostly in the afternoons during the winter season. Benefitting from realistic topography and high horizontal resolution as fine as 111 m, the LES can replicate features similar to the wind fields observed during the gale period. Investigation of the early morning wind structure over the mountain revealed that weak inflows were blocked, reversed, and divided in the upstream area and that some weak lee waves, rotors, and two clear lee vortices were evident downstream. As the upstream wind accelerated and the boundary layer developed during the daytime, the lee waves became amplified with severe downslope wind and rotors. The interaction and coherent structure of the downslope wind, rotor, and vortices were investigated to show the severe wind distribution. The mountain drags associated with blocking and amplified lee waves are displayed to show the potential impact on the large-scale model. The linear lee-wave theory was adopted to explain the wave evolution during this event together with a discussion of the uncertainty around low-level nonlinear processes

    Online Content Consumption: Social Endorsements, Observational Learning and Word-of-Mouth

    Get PDF
    The consumption of online content can occur through observational learning (OL) whereby consumers follow previous consumers’ choices or social endorsement (SE) wherein consumers receive content sharing from their social ties. As users consume content, they also generate post-consumption word-of-mouth (WOM) signals. OL, SE and WOM together shape the diffusion of the content. This study examines the drivers of SE and the effect of SE on content consumption and post-consumption WOM. In particular, we compare SE with OL. Using a random sample of 8,945 new videos posted on YouTube, we collected a multi-platform dataset consisting of data on video consumption and WOM from YouTube and data on tweet sharing of the video from Twitter. Applying a panel vector autoregression (PVAR) model, we find that OL increases consumption significantly more than SE in the short run. However, SE has a stronger effect on content consumption in the long run. This can be attributed to the impact of SE on WOM signals, which also increase content consumption. While OL and SE leads to similar amount of positive WOM, SE generates significantly more negative WOM than OL. Our results also show that SE is driven by WOM (i.e., likes and dislikes) but not content popularity. We further confirm the effects of OL vs. SE on content consumption and WOM using a randomized experiment at the individual consumer level. Implications for content providers and social media platforms are derived accordingly

    Investigation on the methane adsorption capacity in coals : considerations from nanopores by multifractal analysis

    Get PDF
    ACKNOWLEDGEMENTS This research was funded by the National Natural Science Foundation of China (grant numbers 41830427, 41922016, and 41772160).Peer reviewedPostprin

    Hyperspectral Image Super-Resolution via Dual-domain Network Based on Hybrid Convolution

    Full text link
    Since the number of incident energies is limited, it is difficult to directly acquire hyperspectral images (HSI) with high spatial resolution. Considering the high dimensionality and correlation of HSI, super-resolution (SR) of HSI remains a challenge in the absence of auxiliary high-resolution images. Furthermore, it is very important to extract the spatial features effectively and make full use of the spectral information. This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet). Specifically, a dual-domain network is designed to fully exploit the spatial-spectral and frequency information among the hyper-spectral data. To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain. Meanwhile the pyramid structure is applied to increase the acceptance field of attention, which further reinforces the feature representation ability of the network. Moreover, to further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain. The dynamic weighting mechanism drives the network to gradually refine the generated frequency and excessive smoothing caused by spatial loss. Finally, In order to better fully obtain the mapping relationship between high-resolution space and low-resolution space, a hybrid module of 2D and 3D units with progressive upsampling strategy is utilized in our method. Experiments on a widely used benchmark dataset illustrate that the proposed SRDNet method enhances the texture information of HSI and is superior to state-of-the-art methods

    VommaNet: an End-to-End Network for Disparity Estimation from Reflective and Texture-less Light Field Images

    Full text link
    The precise combination of image sensor and micro-lens array enables lenslet light field cameras to record both angular and spatial information of incoming light, therefore, one can calculate disparity and depth from light field images. In turn, 3D models of the recorded objects can be recovered, which is a great advantage over other imaging system. However, reflective and texture-less areas in light field images have complicated conditions, making it hard to correctly calculate disparity with existing algorithms. To tackle this problem, we introduce a novel end-to-end network VommaNet to retrieve multi-scale features from reflective and texture-less regions for accurate disparity estimation. Meanwhile, our network has achieved similar or better performance in other regions for both synthetic light field images and real-world data compared to the state-of-the-art algorithms. Currently, we achieve the best score for mean squared error (MSE) on HCI 4D Light Field Benchmark
    corecore