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ABSTRACT

Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in

Mesoscale Wave Dynamics. (May 2009)

Tingting Qian, B.S., Nanjing University;

M.S., Peking University

Co–Chairs of Advisory Committee: Dr. Craig C. Epifanio
Dr. Fuqing Zhang

Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence

interaction in a breaking mountain wave and (ii) gravity wave generation associated

with coastal heating gradients.

The mean and turbulent structures in a breaking mountain wave are considered

using an ensemble of high-resolution (essentially LES) wave-breaking calculations. A

turbulent kinetic energy budget for the wave shows that the turbulence production

is almost entirely due to the mean shear. Most of the production is at the top of

the leeside shooting flow, where the mean-flow Richardson number is persistently

less than 0.25. Computation of the turbulent heat and momentum fluxes shows that

the dissipation of mean-flow wave energy is due primarily to the momentum fluxes.

The resulting drag on the leeside shooting flow leads to a loss of mean flow Bernoulli

function as well as a cross-stream PV flux. The dependence of both the resolved-scale

and subgrid turbulent fluxes on the grid spacings is examined by computing a series

of ensembles with varying grid spacings. The subgrid parameterization is shown to

produce an overestimate of the PV flux at low grid resolution.

The generation of gravity waves by coastal heating gradients is explored using
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linear theory calculations and idealized numerical modeling. The linear theory for flow

without terrain shows that the solution depends on two parameters: a nondimensional

coastal width L and a nondimensional wind speed U . For U 6= 0 the solution is

composed of three distinct wave branches. Two of these branches correspond to the

no-wind solution of Rotunno, except with Doppler shifting and dispersion. The third

branch exists only for U 6= 0 and is shown to be broadly similar to flow past a steady

heat source or a topographic obstacle. The relative importance of this third branch

is determined largely by the parameter combination U/L.

The effect of terrain is explored in the linear context using an idealized linear

model and associated diagnostic computations. These results are then extended to

the nonlinear problem using idealized nonlinear model runs.
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tors (ū, w̄)/U at time Ut/L = 35. . . . . . . . . . . . . . . . . . . . . 21

8 Snapshots of vorticity η/N [color shading; c.i. = 0.6, red shad-

ing positive and blue shading negative] and potential temperature

θ/NU [violet contour; c.i. = 1] taken from one ensemble member

at a fixed value of y. Shown are times Ut/L = (a) 17, (b) 17.2, (c)

17.4, (d) 17.6 and (e) 17.8. Black lines show the Ri = 0.25 con-

tour, where Ri is the Richardson number for the ensemble-mean

flow as averaged over 17 ≤ Ut/L ≤ 18. . . . . . . . . . . . . . . . . 22

9 Resolved-scale turbulent kinetic energy ε̄/U 2 [shaded; c.i. = 0.04

with values greater than 0.04 shown] and ensemble-mean isen-

tropes θ̄/NU [c.i. = 1] at time Ut/L = (a) 6.25, (b) 7.5, (c) 8.75,

(d) 12.5, (e) 15, and (f)17.5. . . . . . . . . . . . . . . . . . . . . . . . 24

10 Resolved-scale TKE and generation terms. (a) Area-averaged

TKE 〈ε̄〉/U 2 [solid line; uses right axis label] and associated area-

averaged budget terms [scaled by U 3/L; left axis label] as func-

tions of Ut/L. The budget terms include shear generation [dashed-

circle], buoyant generation [dotted-square], and dissipation [dash-

dotted-triangle]. Axis labels in (a) [both left and right] include

factors of 10−2. (b) The shear generation [scaled by U 3/L; shaded

c.i. = 0.1] and (c) dissipation [scaled by U 3/L; shaded c.i. = 0.1]

terms at time Ut/L = 12.5. . . . . . . . . . . . . . . . . . . . . . . . 25

11 Resolved-scale eddy forcing, Bernoulli reduction and wave dissi-

pation terms as averaged over 17 ≤ Ut/L ≤ 18. Eddy forcings are

(a) LF̄x/U
2 [c.i. = 0.1], (b) LF̄z/δU

2 [c.i. = 1] and (c) LH̄/NU2

[c.i. = 0.05]. The associated Bernoulli terms are (d) L (ū · F̄) /U3
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CHAPTER I

INTRODUCTION

A. Introduction

Gravity waves play an important role in many aspects of atmospheric dynamics. At

smaller scales, the vertical motion in gravity waves is one of the primary triggering

mechanisms for atmospheric convection. Gravity waves can also feature significant

shear and instability, which can sometimes lead to hazardous clear-air turbulence.

Gravity waves also play a role in many larger-scale circulations through the associated

transfer of momentum and energy away from heat sources and topography. This wave

transport has an important influence on many regional circulations, such as the sea

breeze and mesoscale convective systems. Gravity wave momentum transport away

from topography in particular plays an important role in the momentum budget of

the atmosphere and hence the general circulation.

The present study addresses two aspects of gravity wave dynamics. The first is

the turbulent wave breakdown of large-amplitude waves over topogarphy. The second

is the sea breeze wave response in flows with background wind and terrain.

B. Overview of the Topography Work

It is well known that flow past a topographic obstacle of sufficient height will produce

a mountain wave that overturns and breaks ([1]; [2]; [3]; [4]). Such wave breaking

can be a significant source of clear-air turbulence and can also lead to the onset of

severe downslope winds at the ground ([5]; [6]). Wave breaking is also of fundamental

The journal model is IEEE Transactions on Automatic Control.
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importance for the momentum balance of the atmosphere, in that the breaking ul-

timately provides the mechanism for wave / mean-flow interaction ([7]). With these

fundamental concerns, the dynamics of breaking mountain waves has received much

attention.

Most prior studies have focused on one of two aspects. Low-resolution model-

ing studies with parameterized turbulence have focused mainly on mesoscale wave

and wave/mean-flow interaction dynamics and on the formation of mountain wakes

([8]; [9]; [10]; [11]; [12]; [13]). On the other hand, a number of very high-resolution

modeling studies have focused on the detailed turbulent breakdown of the wave ([14];

[15]; [16]). Such studies have lead to improve understanding of both the wave-scale

and turbulence scale phenomena in the breaking wave. However, few studies have

explored the detailed interaction between these two scales.

The objective of our topography work was to provide a first step towards un-

derstanding the detailed scale interactions between the small-scale turbulent eddies

and the larger-scale mean wave structure in a breaking mountain wave. Our study

attempted to address this issue through considering an ensemble of 40 high-resolution

wave-breaking simulations for 3D flow past a 2D ridge.

C. Overview of the Sea Breeze Work

The sea breeze circulation is an atmospheric response to the differential surface heat-

ing between the land and the sea. It impacts many atmospheric processes over coastal

regions including, but not limited to, the initiation and modulation of thunderstorms,

fog and air pollution. Since these atmospheric processes strongly affect the life of peo-

ple who live in coastal areas, the structure of the sea breeze has been studied for a

long time. Over the past two centuries since the first known published study on the
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sea breeze by [17], there have been numerous studies on the subject based on different

approaches: observational ([18], [19], [20], [21], [22], [23]), analytical ([24], [25], [26],

[27], [28], [29]), numerical ([30], [31], [32], [33]) and laboratory ([34], [35]).

Most of the aforementioned studies focus on the local features of the sea breeze

and its associated low-level front and density current. However, a few studies have

noted that the sea breeze also has a mesoscale gravity wave signature ([36], [37,

hereafter R83], [38], [39], [40], [41, 42]). Recently, a number of observational studies

(e.g., [40] and [41, 42]) have suggested that such mesoscale coastal gravity waves

may play a role in initiating convection far offshore. This costal wave hypothesis has

received significant attention in recent years. However, from a theory perspective the

detailed study of these waves has been limited to relatively simple cases–particularly,

the no-wind and no-terrain case studied by R83 and others. The role of background

wind and terrain in these flows has by comparison received relatively little attention.

The general objective of our sea breeze work is to explore the role of background

wind and terrain in modifying the mesoscale sea-breeze wave response. Our approach

to this problem involves both linear theory calculations and idealized numerical mod-

eling.

D. Dissertation Outline

The following chapter describes our work on wave / turbulence scale interactions in

a breaking mountain wave. The results in this chapter are taken from an article

published in J. Atmos. Sci. (see [43], hereinafter EQ08 for details). A transition to

the sea-breeze problem is made in Chapter III, which provides background material

on the sea-breeze wave response. Chapter IV explores the linear theory of this wave

response including the effects of a background wind. The results in Chapter IV are
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taken from a manuscript in press for J. Atmos. Sci. (see [44], hereinafter Q08, and

http://atmo.tamu.edu/people/faculty/epifanio.php for details). Chapter V explores

both the role of terrain in the wave response as well as the role of nonlinear processes

at large heating amplitudes. The final chapter provides a general summary and

discussion.
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CHAPTER II

WAVE-TURBULENCE INTERACTIONS IN A BREAKING MOUNTAIN WAVE

A. Background for Topographic Gravity Waves

Flow of the atmosphere past hills and mountains can often lead to vertically propa-

gating gravity wave disturbances called mountain waves. Mountain waves can have

an important influence on local weather and can also lead to clear-air turbulence

when the waves break. The waves also exert a pressure drag on the ground and thus

play an important role in the momentum balance of the atmosphere.

Early work on mountain waves relied mainly on results from linear theory (e.g.,

[45], [46], [47], [48], [49]). This work revealed many basic features of mountain waves

– e.g., the flow decelerates on the front side of the mountain and accelerates on the

lee side – and also characterized how the wave patterns aloft vary with the flow and

terrain parameters. Perhaps most importantly, they showed that the mountain wave

produces a pressure difference across the terrain, implying a net pressure stress on

the ground. This stress is then transported vertically by the mountain-wave vertical

mementum flux and is ultimately exerted at heights above the ground where the

waves dissipate ([50]).

The study of nonlinear effects in mountain waves began with the analytical and

laboratory studies of [51, 52] and the subseqent extensions by [1], [53] and others.

These studies showed that as the height of the obstacle increases, the wave pattern

steepens. At a critical height the wave overturns and breaks, leading to small-scale

turbulence. This prediction has been verified by numerous laboratory studies over

the years ([52], [3], [2]) and also by a growing number of observational studies docu-

menting breaking mountain waves in nature ([54], [55], [4], [56]).
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The most useful tool for investigating nonlinear effects and wave breaking in

mountain waves has been numerical simulation. The first numerical calculations of

breaking waves were those of [57] and [58]. These studies showed that wave over-

turning and turbulent mixing produces a weakly stratified and nearly stagnant layer

aloft and downstream of the lee slope. Below this layer the flow is strongly acceler-

ated, much like transcritical shallow-water flow over a hill ([59] and [60]). The early

numerical work also showed that breaking leads to dissipation of the mountain wave,

resulting in divergence of wave momentum flux and the local drag on the mean flow.

Subsequent studies of wave breaking have explored a wide range of topics, including

upstream influence (e.g., [61]), 3D effects (e.g., [62], [63]), downslope windstorms (e.g.,

[64], [59], [65]), PV generation ([9], [10], [66, 11]) and wave instability mechanisms

(e.g. [67], [14]).

1. Wake formation

In recent years, a main focal point for the study of wave breaking has been the prob-

lem of orographic wake formation and the associated wave / mean-flow interaction

dynamics. It is well understood from the linear theory that mountain waves transport

disturbance momentum in the vertical (see, e.g., [68], chapter 8). In absence of dis-

sipation this transport of momentum is uniform with height, so that the momentum

flux has zero divergence at all levels ([50]). However, when wave breaking occurs the

wave is dissipated, causing the momentum flux to decrease with height locally. The

result is a local momentum flux convergence and an associated drag on the mean

flow, often leading to the formation of a decelerated wake region downstream. Inte-

grated globally, this wave / mean-flow interaction process and associated drag has an

important impact on the global momentum budget of the atmosphere.

Most recent studies have approached the wake formation and wave / mean-flow
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interaction problems from the perspective of potential vorticity (PV) generation. The

turbulent fluxes of heat and momentum and associated dissipation in breaking wave

cause the production of mean-flow PV in the breaking region. This PV is then

advected downstream, with positive PV on the right side of the mountain (facing

downstream) and negative PV on the left. As suggested by [69], [70] and [71], the

dynamics of the wake and its interaction with larger scales could in principle be

diagnosed from this PV distribution. Many subsequent studies of breaking waves

have focused on PV production, including theoretical and numerical studies (e.g.,

[8], [72], [9], [10], [11], [13] and others) and a number of recent observational and

real-world modeling efforts (e.g., [12]; [73]; [13]; [74]; [75]).

2. Wave breakdown study

The aforementioned and other similar studies have improved our understanding of to-

pographic wave breaking and wake formation. However, it should be noted that the

turbulent dissipation by small-scale eddies and resulting PV production in the break-

ing wave have not actually been resolved in these studies. Instead, parameterizations

are applied to imitate these processes.

By contrast, there have also been a number of very high-resolution numerical

studies to investigate the detailed turbulent breakdown of the wave. Most of these

calculations have focused on wave overturning and instability near a critical level in

a background shear flow. Of course the trade-off is that to date these studies have

been limited to relatively small domain sizes with doubly periodic boundaries and

short integration times.

The first high-resolution wave breaking study was that of [67], who focused

mainly on differences between 2D and 3D breaking waves. The comparison between

the 2D and 3D results indicated that the dynamic process of wave instability and
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turbulent breakdown is fundamentally 3D in nature. The calculation of the eddy

kinetic energy sources showed that the buoyancy source was important in the early

stages of wave breakdown while shear generation was dominant in the later time.

The calculation of [76] confirmed the roles of buoyancy and wind shear effects and

pointed out that the interaction between the two effects led to the 3D nature of the

instability. The detailed examination of this subject was then extended by [77], [14],

[15], [16].

3. Chaper outline

The above two aspects of mountain wave breaking – namely, the larger-scale dynamics

of wake formation and the much smaller-scale turbulent wave breakdown – are in

principle very closely related. However, in practice the work on these two aspects

has been seperated by considerable gaps in both scale and approach. The goal of

the present work is to provide a first step toward bridging these gaps. The approach

of the study is to consider an ensemble of relatively high-resolution large-eddy wave

breaking calculations for the problem of 3D flow past a 2D ridge. Our interest is

then to explore the interaction between the larger-scale ensemble-mean flow and the

smaller-scale turbulent eddies, with a particular interest in the role of the turbulent

heat and momentum fluxes in helping to shape the ensemble mean.

The following section describes the basic problem formulation, the numerical

model used in the study and the ensemble design for our calculations. Section C

presents the evolution of breaking wave as seen from the ensemble mean. The tur-

bulence characteristics of the breaking wave are analyzed in detail in section D. The

turbulent eddy structure, TKE budget, and the turbulent fluxes and dissipation of

mean-flow wave energy are all discussed. Section E provides a detailed look at the

impact of the breaking wave on the large-scale environment. The resolution depen-
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dence of the eddy fluxes is considered in section F. A summary of the topography

work is given in the last section.

B. Basic Physics and Computational Framework

1. Basic problem formulation

We consider a 3D, nonrotating, compressible Boussinesq flow with constant back-

ground wind, as described by

∂ui

∂t
+ uj

∂ui

∂xj
= −∂P

∂xi
+ δi3b−

∂Tij

∂xj
(2.1)

∂b

∂t
+ uj

∂b

∂xj
+N2w = −∂Bj

∂xj
(2.2)

∂P

∂t
+ uj

∂P

∂xj
+ c2s

∂uj

∂xj
= 0 (2.3)

where x = (x1, x2, x3) = (x, y, z) is the position vector; u = (u1, u2, u3) = (u, v, w)

is the velocity; P is the Boussinesq disturbance pressure and b is the buoyancy; cs is

the Boussinesq sound speed; and δi3 is the Kronecker delta, which is 1 in the vertical

momentum equation (i.e., i = 3) and 0 in the horizontal equations. The background

Brunt-Väisälä frequency N is taken to be constant, implying that the Boussinesq

background potential temperature variable is

θ0 = N2z + constant (2.4)

The total Boussinesq potential temperature variable is then defined by θ = θ0 + b.

The viscous stress is given by

Tij = −κσij, where (2.5)

σij =
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij∇ · u (2.6)
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is the deformation and κ is the kinematic viscosity. The diffusive heat flux is defined

by

Bj = −κ ∂θ
∂xj

. (2.7)

Note that the viscosity and thermal diffusivity are assumed to be equal in our study.

This viscosity /diffusivity is defined as the sum of a background viscosity κ0 and a

turbulent eddy viscosity κe, with further discussion of κe given below. Free-slipe and

thermal insulation conditions are applied for the stresses and heat fluxes at the lower

boundary.

The shape of the 2D ridge is described by

h(x, y) =















h0

16
[1 + cos(πx

4L
)]4, if |x| ≤ 4L,

0, otherwise,

(2.8)

where h0 is the height of the topography and L is roughly the half width. The lower

boundary condition is then defined by

w = uj
∂h

∂xj
(2.9)

at z = h(x, y). In principle, the domain is unbounded in both the horizontal and

positive vertical directions. Note that the flow is 3D even though the obstacle shape

is 2D – that is, we consider 3D flow past a 2D obstacle.

The system is nondimensionalized by a standard nonlinear mountain-wave scaling

given by

x = Lx̂, y = Lŷ, z =
U

N
ẑ, t =

L

U
t̂, u = Uû,

v = Uv̂, w =
U2

NL
ŵ, b = NUb̂, P = U2P̂ , h = h0ĥ,

where U is the background wind and the hat indicates nondimensional quantity. With
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this scaling, the property of the flow is determined by 4 nondimensional parameters:

the dynamical aspect ratio δ = U/NL, the Mach number Ma = U/cs, Reynolds

number Re = δ2UL/κ0 and the nondimensional mountain height ε = Nh0/U . For

the problem in present study, we require

I) effectively incompressible (small Ma), nearly hydrostatic (small δ) and essen-

tially inviscid flow (large Re),

II) the appearance of wave breaking (ε > 1 or so),

III) negligible upstream blocking (ε < 2 or so).

On the base of these limits, we set δ = 0.1, Ma = 0.03, Re = 125 and ε = 1.6 in all

simulations.

The disturbance is initiated by implusive expansion of the lower boundary to

add a mountain at time t = 0. The initial adjustment to this expansion is assumed

incompressible, implying that the initial velocity is given by a potential flow solution

for the terrain (2.8). As shown by EQ08, the initial buoyancy field produced by the

expansion is given by

∇2b = 0 with (2.10)

b = −N2h at z = h(x) and (2.11)

b → 0 as x2 + z2 → ∞. (2.12)

Detailed explanation can be found in E08. The initial condition for pressure is de-

duced on the basis of associated buoyancy and velocities.

Note that this expansion initial condition eliminates the θ gradients along the

topography surface and thereby simplifies the early evolution of the flow. This early

evolution is depicted in Fig. 1
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Fig. 1. Early evolution of the flow following an impulsive expansion of the obstacle.

(a) Disturbance wind (u− U)/U [contour interval (c.i.) = 0.05; light shading

less than 0.05, dark shading greater than 0.05] and θ/NU [c.i. = 1] at time

Ut/L = 0. (b) (u − U)/U [c.i. = 0.6; light shading negative, dark shading

positive] and θ/NU at time Ut/L = 2.5. (c) As in (b) but for Ut/L = 5.

2. Model description and simulation detail

The simulations are conducted using the three-dimensional compressible Boussinesq

model described by [63]. The model uses the splitting method of [58], in which

acoustic terms are integrated with a small time step to improve stability while the

remaining terms are integrated with a larger time step to improve efficiency. The

lateral and upper boundary conditions are realized through the damping layer. The

lower boundary is free-slip and thermally insulating. Terrain is included through the

use of the terrain-following vertical coordinate

q =
z − h

zT − h
zT (2.13)

where zT is the domain depth.

The mixing coefficient in the model follows a Smagorinsky-type formulation in

which the kinematic viscosity κ is composed of the constant background viscosity κ0

plus a variable eddy viscosity κe. Further discussion is given in section F. In order

to eliminate high-wavenumber numerical noise and keep the model stable, the model
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introduces additional filter terms to the basic equations (2.1) and (2.2). The form of

the filters is −α∇4
Hui and −α∇4

Hb, where α is the filter coeffient and where ∇4
H is

a horizontal fourth-derivative operator. For convenience in the later discussion, we

define the total subgrid-scale dissipation terms to be the sum of the parameterized

eddy term and the filter term as

Si =
∂

∂xj
(κeσij) − α∇4

Hui and (2.14)

Q =
∂

∂xj
(κe

∂θ

∂xj
) − α∇4

Hb, (2.15)

where Si = (S1, S2, S3) = (Sx, Sy, Sz).

Finally, the simulations are carried out in a domain with the horizontal extent

being around 22L in the x direction and 0.54L in the y direction and the domain

depth being 5πU/N (see the schematic in figure 2). Periodic boundary conditions

are applied at the grid edges in the y direction. The choice of this set of model

dimensions makes it possible for the results to include the effect from 3D turbulent

eddies. The damping layers are imposed for the outer 4L of the domain in x and the

upper half of the domain in z. The horizontal grid spacing is 4x = 4y ≈ L/56. The

vertical grid spacing is stretched with factor 1.005. The bottom grid spacing is given

by N4z/U ≈ 2π/63. In dimensional terms, L = 10 km, U = 10 m/s, N = 0.01s−1,

4x = 4y = 180m and 4z ≈ 100m.

3. Ensemble averaging

We compute M ensemble members and write each member with subscript k, such

as uk, vk, etc. Each member is seeded with a small random potential temperature

perturbation, which is added to the simulation shortly before the onset of the wave

breaking. In this way, the turbulent wave breakdown is made different in every run.
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22 L (1220 ∆x) 0.54 L (30 ∆y)

5π U/N (120 ∆z)

Fig. 2. Schematic illustration of the model domain for our calculations. (The

along-ridge domain extent has been exaggerated for clarity.)

The definition of the mean flow is obtained by the ensemble and along-ridge

average over all the members; specifically

ū(x, z, t) =
1

YM

∫ Y

0

M
∑

k=1

uk(x, y, z, t)dy (2.16)

where Y is the along-ridge width of the domain. For convenience, we refer to this

average simply as the ensemble mean in the following. Then the total field can be

written as

u(x, y, z, t) = ū(x, z, t) + u′(x, y, z, t),

where u′(x, y, z, t) is the disturbance flow.

As an approximation we assume the mean flow to be imcompressible. Applying

the above average to the nonrotating Boussinesq equations (2.1), (2.2) and (2.3) then
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leads to

∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
= −∂P̄

∂x
+ κ0∇2ū+ F̄x + S̄x, (2.17)

∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z
= −∂P̄

∂z
+ b̄+ κ0∇2w̄ + F̄z + S̄z, (2.18)

∂b̄

∂t
+ ū

∂b̄

∂x
+ w̄

∂b̄

∂z
+N2w̄ = κ0∇2b̄+ H̄ + Q̄, (2.19)

∂ū

∂x
+
∂w̄

∂x
= 0 (2.20)

where

F̄x = −∂u
′u′

∂x
− ∂u′w′

∂z
, (2.21)

F̄z = −∂w
′u′

∂x
− ∂w′w′

∂z
, (2.22)

H̄ = −∂b
′u′

∂x
− ∂b′w′

∂z
. (2.23)

Here the primes indicate turbulent quantities on the resolved scale so that F̄x, F̄z and

H̄ are the resolved-scale eddy forcings. S̄x, S̄z, and Q̄ are the mean parameterized

forces including the effects of filters as defined by (2.14) and (2.15). As discussed

by EQ08, for our high-resolution calculations the S̄x, S̄z and Q̄ terms are relatively

small.

4. Instantaneous and averaging field

Because of computational contraints, our ensemble size was limited to 40 members.

To check the degree to which the averaging result with M = 40 approximates the

true mean (i.e., M → ∞), we consider two criteria: (i) we compare the instantaneous

unaveraged computations and the ensemble-mean results so as to tell if the turbulence

is mostly smoothed out; and (ii) we check that the ensemble-mean result is almost

unchangable with M when the ensemble size reaches some number. We evaluate that
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these criteria from three perspectives: the mean flow, the resolved-scale turbulent

eddy and the area-average of eddy forcings.

Fig. 3(a) shows the instantaneous horizontal velocity u and the isentropes θ as

taken from one ensemble member at a fixed y. It is obvious that the flow is turbulent

over the lee slope. With 10 ensemble members [Fig. 3(b)], the ensemble-mean result

removes most of the turbulent fluctuations and the mean flow pattern is obviously

recognizable. However, some fluctuations can still be seen over some of the more

turbulent regions in the downstream areas. Figs. 3(c) and 3(d) show that for the

mean flow, the mean results for 20 members is very close to the mean result for 40

members.

Fig. 4 shows that the turbulent eddy force F̄x is more difficult to compute. As

expected, the distribution of the force term for M = 1 and M = 10 is relatively noisy.

When M = 40, the pattern of postive and negative F̄x becomes easily apparent;

however, there are still some local peaks. To produce smoother results, an additional

time average is applied to the ensemble mean. In particular, our model data contains

a high time-resolution output sequence from Ut/L = 17 to Ut/L = 18 with output

interval of U4t/L = 0.1. Fig. 4(d) shows that averaging F̄x over 17 ≤ Ut/L ≤ 18

smooths the results and produces a more reliable estimation.

Finally, figure 5 shows that computing the area average of the turbulent flux

terms is easier than computing the terms directly. Shown in Fig. 5 is the area-

averaged mean flow PV flux defined by

〈JPV
y 〉 =

1

A

∫

A

(F̄x
∂θ̄

∂z
− F̄z

∂θ̄

∂x
− H̄η̄)dA (2.24)

where η̄ = ∂ū/∂z − ∂w̄/∂x is the mean plane-normal vorticity. The integral area A

is the effective x - z domain of the simulation not including the damping layers. As

shown in figure 5 for small M the averaged PV flux varies rapidly with M . But then
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Fig. 3. Averaging out the turbulence in our ensemble calculations. (a) Random snap-

shot of the flow at fixed y from one ensemble member. Shown are (u− U)/U

[c.i. = 0.5; darker shading positive, lighter shading negative] and θ/NU [c.i.

= 1] at time Ut/L = 12.5. (b),(c) The corresponding ensemble-mean fields

(ū − U)/U [same c.i. and shading] and θ̄/NU for the cases (b) M = 10, (c)

M = 20 and (d) M = 40.

as M approaches 40 the averaged flux appears to roughly converge, suggesting that

M = 40 provides a reliable approximation.

C. Mean Fields

The present section descibes the ensemble-mean structure of the flow. The mean

isentropes and cross-mountain wind at time Ut/L = 6.25, 17.5 and 35 are displayed

in Fig. 6. The time Ut/L = 6.25 is the first output time at which the wave is just

beginning to break. The isentropes at this time have begun to overturn above the lee
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Fig. 4. Computing the eddy-flux forcings. Black lines show θ̄/NU [c.i. = 1] and color

contours show LF̄x/U
2 at time Ut/L = 17.5 for (a) M = 1 [c.i. = 0.15], (b)

M = 10 [c.i. = 0.12] and (c) M = 40 [c.i. = 0.1]. Red colors indicate values

greater than the contour interval, blue colors show less than minus the contour

interval. (d) as in (c) but averaged over the time interval 17 ≤ Ut/L ≤ 18.
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Fig. 5. Area-averaged mean-flow PV flux L 〈J PV
y 〉 /N2U2 [see (2.24)] as a function of

the ensemble size M at time Ut/L = 17.5.

slope of the mountain and wind reversal region is apparent over a significant portion

of the wave. A small but non-zero value of TKE (as computed in section D2) suggests

that the wave at this time has begun to break.

At time Ut/L = 17.5, the structure of the mean-flow is changed significantly by

the breaking mountain wave. A well-mixed region is formed over lee slope (Fig. 6b)

and this region spreads downstream with time (Fig. 6c). At time Ut/L = 35, the

flow fields almost reached steady state. The flow in the well-mixed region is almost

stagnant while the flow above and below this region is strongly accelerated. Trapped

steady waves are clearly seen above the well-mixed region at this time.

For nearly incompressible flow, the plane-normal vorticity η̄ completely deter-

mines the mean velocity distribution. Figure 7 shows the mean vorticity η and the

velocity vectors at the last output time. It is apparent that the stagnant wake region
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Fig. 6. Ensemble-mean potential temperature θ̄/NU [c.i. = 1] and cross-ridge wind

component (ū − U)/U [c.i. = 0.5; darker shading positive, lighter shading

negative] at times Ut/L = (a) 6.25, (b) 17.5 and (c) 35.

extends downstream. Above the stagnant region the vorticity is positive into the page

and below this layer the vorticity is negative. The superposition of the two vorticity

anomalies implies the stagnant wake layer.

D. Turbulence Characteristics

The turbulent characteristics of the flow are described in the present section. Section

D1 gives an example to document a typical turbulent eddy structure in the flow.

Section D2 discusses the TKE budget as a function of time. The turbulent fluxes and

dissipation of mean-flow wave energy are calculated in section Section D3.

1. Turbulent eddy structure

Figure 8 shows the plane-normal vorticity and the isentropes from one chosen ensem-

ble member at a fixed value of y at time Ut/L = 17.0, 17.2, 17.4, 17.6 and 17.8. The

overlaid thick black solid line is the time-averaged mean-flow Richardson number;

that is, Ri = ∂θ̄/∂z/def 2 where def 2 = σ̄ijσ̄ij/2 is the mean-flow deformation. The

time average of Ri is taken over the interval from Ut/L = 17 to 18 as described in
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Fig. 7. Mean plane-normal vorticity component η̄/N [c.i. = 0.4; darker shading pos-

itive, lighter shading negative] and mean velocity vectors (ū, w̄)/U at time

Ut/L = 35.

section B4. Only the Ri = 0.25 contour is shown.

Figure 8 shows that the flow becomes turbulent only downstream of the first

point where Ri = 0.25. Upstream of this point the flow is laminar. The turbulence

appears as a series of eddies that initiate at the front of the low-Ri region and then

move downstream. As an example one obviously large turbulent eddy is observed at

point x/L = 2, Nz/2πU = 0.25 at time Ut/L = 17. With increasing time, eddy is

advected downstream and a new eddy appears upstream. Note that the example in

Fig. 8 is the cleanest case of eddy evolution observed from all 40 ensemble members.

In most cases the eddies are less coherent. We thus move to averaged measures of

the turbulence in the following sections.
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Fig. 8. Snapshots of vorticity η/N [color shading; c.i. = 0.6, red shading positive and

blue shading negative] and potential temperature θ/NU [violet contour; c.i. =

1] taken from one ensemble member at a fixed value of y. Shown are times

Ut/L = (a) 17, (b) 17.2, (c) 17.4, (d) 17.6 and (e) 17.8. Black lines show the

Ri = 0.25 contour, where Ri is the Richardson number for the ensemble-mean

flow as averaged over 17 ≤ Ut/L ≤ 18.
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2. TKE budget

The resolved-scale TKE of the breaking wave is given by ε̄ = u′
iu

′
i/2, where again the

prime indicates the deviation from the ensemble mean. Substracting (2.17)-(2.18)

from (2.1) and multiplying the ith turbulent moumentum equation by u′
i, the TKE

equation can be obtained as

Dε

Dt
= −u′i

∂P ′

∂xi
− u′iu

′
j

∂u′i
∂xj

− u′iu
′
j

∂ui

∂xj
+ b′w′ + u′i(Di −Di), (2.25)

where

D̄

Dt
=

∂

∂t
+ ū

∂

∂x
+ w̄

∂

∂z

and

Di =
∂

∂xj
(κ0σij) + Si

is the sum of the background viscous, parameterized eddy, and filter dissipation terms.

For the equation (2.25), the terms on the right are: the pressure-gradient work term,

the turbulent transport term, the shear generation term, the buoyancy generation

term and the TKE dissipation term.

Figure 9a displays the time evolution of the TKE. At Ut/L = 6.25 the isentropes

are overturned and the wave starting to break. Time Ut/L = 7.5 is the first output

time following the onset of the breaking wave (Fig. 9b). The TKE at this time is

maximized near the ground with the largest TKE value exceeding 0.47U 2 (or root-

mean-square u′i of nearly ±U). By Ut/L = 8.75 the burst of TKE near the ground is

dissipated and the maximum TKE region is located above the lee side of the mountain

(as shown in Fig. 9c). With increasing time, the amplitude of TKE decreases (as in

Figs. 9d-f).

Figure 10a shows the evolution of the area-averaged TKE as well as the dominant

forcing terms in TKE equation. As should be expected, a rapid burst of TKE appears
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Fig. 9. Resolved-scale turbulent kinetic energy ε̄/U 2 [shaded; c.i. = 0.04 with values

greater than 0.04 shown] and ensemble-mean isentropes θ̄/NU [c.i. = 1] at

time Ut/L = (a) 6.25, (b) 7.5, (c) 8.75, (d) 12.5, (e) 15, and (f)17.5.

at the output time Ut/L = 7.5. The mean TKE then increases slightly until it reaches

a maximum at the output time Ut/L = 10. At later times the TKE steadily decreases

until reaching a relatively constant value after Ut/L = 20. The three dominant forcing

terms in the TKE equation are the shear generation term, the dissipation term and

the buoyancy term. Among them, the shear generation term is essentially balanced

by the dissipation term. The buoyancy term is only noticeable during the burst of

TKE and is negative for the output times shown.

Figures 10b,c indicate the spatial distribution of the two largest terms –shear

generation term and dissipation term – in the TKE equation at time Ut/L = 12.5.

Consistent with Figs. 8 and 9, both of them appear along the upper edge of lee-slope
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shooting flow. The shear generation term has the larger amplitude but the dissipation

term is greater in spatial extent.
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Fig. 10. Resolved-scale TKE and generation terms. (a) Area-averaged TKE 〈ε̄〉/U 2

[solid line; uses right axis label] and associated area-averaged budget terms

[scaled by U3/L; left axis label] as functions of Ut/L. The budget terms

include shear generation [dashed-circle], buoyant generation [dotted-square],

and dissipation [dash-dotted-triangle]. Axis labels in (a) [both left and right]

include factors of 10−2. (b) The shear generation [scaled by U 3/L; shaded c.i.

= 0.1] and (c) dissipation [scaled by U 3/L; shaded c.i. = 0.1] terms at time

Ut/L = 12.5.

3. The turbulent fluxes

The effect of the turbulent eddies on the mean flow is described by the eddy-flux

convergence terms defined by (2.21-2.23). Figures 11a,b,c display the distribution of

these terms as derived from the high-resolution ensemble. The results in the figure

are averaged over 17 ≤ Ut/L ≤ 18 as described in section B4.

The horizontal flux convergence F̄x is illustrated in Fig. 11a. The distribution of

F̄x is centered roughly on the region of the large TKE in Fig. 9. The sense of F̄x is

to deccelerate the shooting flow over the lee slope and accelerate the nearly stagnant

flow in the wake. A closer look into the contribution of two parts of F̄x shows that
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−∂u′u′/∂x and −∂u′w′/∂z contribute roughly the same amount. The contribution

from the horizontal flux u′u′ is thus not small, as is sometimes assumed in turbulence

parameterizations. In terms of magnitude, F̄x is in the same order as (but smaller

than) the pressure gradient −∂P/∂x.
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(a) F̄x (b) F̄z (c) H̄

(d) ū · F̄ (e) H̄ b̄/N 2 (f) ū
∗

· F̄

Fig. 11. Resolved-scale eddy forcing, Bernoulli reduction and wave dissipation terms

as averaged over 17 ≤ Ut/L ≤ 18. Eddy forcings are (a) LF̄x/U
2 [c.i. =

0.1], (b) LF̄z/δU
2 [c.i. = 1] and (c) LH̄/NU2 [c.i. = 0.05]. The associated

Bernoulli terms are (d) L (ū · F̄) /U3 [c.i. = 0.1] and (e) L (H̄b̄/N2) /U3 [c.i.

= 0.1]. (f) Frictional wave energy dissipation rate L (ū∗ · F̄) /U3 [c.i. = 0.1]

where ū
∗ = (ū − U, w̄) is the mean disturbance wind. Color shading is as

described in Fig. 4. Vectors in (a), (b) and (d) show the mean velocity ū/U

and vectors in (f) show ū
∗/U . Solid lines show θ̄/NU [c.i. = 1].

Fig. 11b shows that the vertical momentum flux convergence term F̄z is also

mostly located in the area of large TKE. Negative F̄z is seen along the downstream

shooting flow above the lee slope and positive F̄z is found along the upward branch
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of the wave. The net effect of F̄z is thus to enhance the bifurcation of the mean flow

around the stagnant wake region.

In contrast to F̄x and F̄z, the pattern for H̄ shows three main anomalies – two

positive and one negative. (The smaller-scale H̄ pattern above Nz/2πU ≈ 0.75

is apparently associated with trapped gravity waves rather than turbulent fluxes.)

Below Nz/2πU ≈ 0.5 both b′u′ and b′w′ terms in (2.23) contribute to H̄ and the net

effect is to transfer heat downward. For the anomaly above Nz/2πU ≈ 0.5 the b′w′

is dominant and the net heat flux is upward. The upward heat flux occurs roughly

where the isentropes in many of the ensemble members are overturned (compare to

Fig. 8), leading to upward fluxes of heat. However, note that the heating pattern

tends to counteract the overturning of isentropes in the mean flow.

The net effect of the eddies on the mean flow is indicated by the mean Bernoulli

function. For the moment we just focus on the resolved-scale eddy contributions and

neglect the background viscous, parameterized eddy and numerical filter terms (all

of which are small) in equations (2.17)-(2.19). Then the equations reduce to

∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
= −∂P̄

∂x
+ F̄x, (2.26)

∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z
= −∂P̄

∂z
+ b̄ + F̄z, (2.27)

∂b̄

∂t
+ ū

∂b̄

∂x
+ w̄

∂b̄

∂z
+N2w̄ = H̄. (2.28)

Taking ū×(2.26) + w̄×(2.27) + b̄/N2×(2.28) gives us

DR

Dt
=
∂P̄

∂t
+ u · F +

H̄b̄

N2
(2.29)

where u = (ū, 0, w̄), F = (F̄x, 0, F̄z) and where the mean-flow Bernoulli function is

defined by

R =
ū · ū

2
+ P̄ +

b̄2

2N2
. (2.30)
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The distribution of Bernoulli function shows that R tends to have reduced values

in the wake (not shown), suggesting the presence of dissipation in the breaking region.

Fig. 11d,e show the two dissipative terms in (2.29): the frictional term ū · F̄ and the

diabatic term H̄b̄/N2. The main dissipation source is clearly the frictional term. This

suggests that the main role of the eddies is the work done by F̄ in decelerating the

lee-side shooting flow (compare Fig. 11a and 11d). The diabatic term acts counter to

the frctional term in the shooting flow but is much smaller and has a limited effect.

Suppose we define the mean-flow wave energy E to be the total energy as seen

in the intrinsic frame (i.e., the frame in which the background wind is zero). Letting

ū
∗ = ū − (U, 0, 0), the wave energy E is then given by

E =
ū∗ · ū∗

2
+

b̄2

2N2
.

and the budget for E derived from (2.28)-(2.30) and (2.20) is

DE

Dt
= −∇ · (P̄ ū

∗) + ū
∗ · F̄ +

H̄b̄

N2
. (2.31)

In the area mean, only terms ū
∗ · F̄ and H̄b̄/N2 in in (2.31) describe the disspative

sources and sinks. Figures 11e, f show that the dissipation of wave energy mainly

depends on the turbulent momentum fluxes and the work done by these fluxes counter

to ū
∗.

E. Wave-mean Interaction Process

As discussed in section A1, a main effect of the turbulent eddies is to dissipate the

mountain wave. This dissipation leads to an interaction of the wave with the larger-

scale environment. In this section, the wave-mean interaction process will be inves-

tigated from two aspects: the vertical transfer of momentum by the wave and the
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cross-stream flux of mean-flow PV. Note that we will again neglect the background

viscous, parameterized eddy and numerical filter terms in this section so that the em-

phasis is put on resolved-scale eddy fluxes. A more detailed analysis of the wave-mean

problem can be found in EQ08.

1. Momentum forcing

The equation (2.26) can be written by

∂ū

∂t
= −∂(P̄ + ūū)

∂x
− ∂ūw̄

∂z
+ F̄x (2.32)

If we assume that the disturbance vanishes as x → ±a as long as a is sufficiently

large, then a horizontal average of (2.32) gives

∂〈ū〉
∂t

= −∂〈ūw̄〉
∂z

+ 〈F̄x〉 (2.33)

where the bracket indicates the horizontal average.

Fig. 12a shows 〈ūw̄〉 as a function of z at 3 different times, suggesting dissipation

of the wave in the breaking region. Fig. 12b displays the two forcing terms on the

right in (2.33) as well as the sum of these two terms. The averaged momentum forcing

is dominated by the wave-scale momentum flux rather than the small-scale turbulent

fluctuations, i.e., the effect of the eddy fluxes is indirect. The role of the eddies is to

dissipate the mountain wave so as to produce a momentum-flux convergence at the

wave scale.

2. PV fluxes

With the Boussinesq approximation, the potential vorticity (PV) for the ensemble-

mean flow is defined by

q = ζ · ∇θ (2.34)
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Fig. 12. (a) Horizontal average of 〈ūw̄〉 as a function of z at Ut/L = 8.75 (solid), 17.5

(dashdot), 35 (dotted). (b) Horizontal average of − ∂〈ūw̄〉
∂z

(solid), 〈F̄x〉 (dotted)

and sum of them (dash) at time Ut/L = 35.

where ζ = ∇× u. The conservation relation for the PV can be written in the form

∂q

∂t
+ ∇ · J = 0 (2.35)

where J is the PV flux as obtained by [69] as

J
PV = ūq + ∇θ̄ × F̄ − ζ̄H̄. (2.36)

The first term on the right side is the advection of PV, and the last two terms are

dissipative flux terms which consist of the frictional PV flux and the diabatic PV flux.

In our 2D ensemble-mean study, the PV for the ensemble-mean flow is zero

everywhere. However, the dissipative cross-stream PV flux exists with non-zero value

(effectively transferring PV between y = −∞ and y = ∞). This dissipative PV flux
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component is given from (2.36) by

JPV
y = F̄x

∂θ̄

∂z
− F̄z

∂θ̄

∂x
− η̄H̄ (2.37)

where η̄ is again the plane-normal component of vorticity.

Figure 13 shows the cross-stream PV flux as well as the frictional and the dia-

batic parts of the flux. The net PV flux (Fig. 13a) is concentrated within the shear

zone between the wake and the shooting flow. The dominant contribution to the

flux is from the frictional term (Fig. 13b). The diabatic part (Fig. 13c) is small by

comparison and has the opposite sense along the shooting flow.
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Fig. 13. (a) The dissipative cross-stream PV flux LJ PV
y /N2U2 [see (2.37)] as averaged

over times 17 ≤ Ut/L ≤ 18 [c.i. = 0.1; red colors positive, blue negative; color

shading as in Fig. 4]. (b) The frictional and (c) the diabatic parts of the flux.

Solid lines in each panel show θ̄/NU [c.i. = 1].

F. Resolution Dependence

The change in the resolved-scale and parameterized eddy fluxes as a function of grid

spacing is documented in this section. Ensemble results are presented for horizontal

grid spacings ranging from L/56 to L/3.7. We will see that the forcing terms in (2.17)-
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(2.19) are dominated by the resolved-scale forcings for the high-resolution results,

while they are dominated by the parameterized terms for the low resolution.

1. The subgrid model

For the subgrid parameterization, we apply a standard Smagorinsky-Lilly formulation

in all calculations. The eddy viscosity in the subgrid model is defined by

κm =















(cml)
2σ

(

1 − R
Rc

)1/2

for R < Rc,

0, otherwise,

(2.38)

and

κh = κm/P (2.39)

where κm is the kinematic eddy viscosity, κh is the thermal diffusivity, R is the

resolved-scale Richardson number and σ =
√

σij σij/ 2 is the resolved-scale deforma-

tion as defined by (2.6). The free parameters for the parameterization include the

mixing constant cm, the mixing length l, the cutoff Richardson number Rc, and the

Prandtl number P.

For the stratified problem, the choice of the parameters in the subgrid model

does not yet rely on a solid foundation ([78]). However, experience with LES shows

that the simulations are not sensitive as long as these parameters are chosen within

a reasonable range (e.g., [78] and [79]). In our calculations, the mixing coefficient

is cm = 0.21, the mixing length is l =
√

∆x∆z, the cutoff Richardson number is

Rc = 0.5, and the Prandtl number is P = 1 so that κm = κh = κe. This set

of parameter values is representative of those used in many research and weather

prediction models.

Our simulations also include a fourth-order filter, as described in section B2. The
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Table I. Grid spacings for the resolution experiments

Ensemble 1 2 3 4 5 6 7 8

Grid increment ∆ 2∆ 3∆ 3.75∆ 5∆ 6∆ 10∆ 15∆

Number of points per L 55.5 27.8 18.5 14.8 11.1 9.3 5.6 3.7

filter coefficient α = 0.2 (∆x)4/ 32∆t.

2. Experimental setup

Our experiments are based on eight sets of ensemble calculations with different reso-

lutions. The horizontal grid spacings are shown in table I. The vertical grid spacing

for the different resolution experiments are roughly same. As in the highest resolution

case, the ensemble size for each calculation is M = 40.

The background viscous, resolved-scale eddy, parameterized eddy, and horizontal

filter terms in (2.17)-(2.19) are computed for each ensemble. For convenience, we

denote the net dissipation terms by

f̄x = κ0∇2ū+ F̄x + S̄x, (2.40)

f̄z = κ0∇2w̄ + F̄z + S̄z, (2.41)

h̄ = κ0∇2b̄ + H̄ + Q̄ (2.42)

where the filter terms are included in the S̄x, S̄z and Q̄ terms. We evaluate the effect

of the dissipation by computing the net PV flux

jPV
y = f̄x

∂θ̄

∂z
− f̄z

∂θ̄

∂x
− η̄h̄, (2.43)

as well as the associated contributions from each dissipation type.
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3. Results

Figure 14 shows the calculations of the resolved PV flux (including background viscous

term and resolved-scale eddy term), subgrid-scale PV flux (including parameterized

eddy and filter terms) and the net PV flux (2.43) for three different resolution (hori-

zontal grid spacings are ∆, 3.75∆ and 10∆, respectively). Note that the flux at the

highest resolution is averaged over 17 ≤ Ut/L ≤ 18, while the fluxes at other two

resolutions are for Ut/L = 17.5.

As expected, for the highest resolution case the total PV flux is composed pri-

marily of the resolved-scale eddy contribution. With increasing grid spacing, the

parameterized PV flux becomes more and more important and the resolved-scale flux

decreases. By 104 the parameterized flux is clearly dominant.

Figure 15 shows the area-average of the different parts of PV flux as a function

of grid spacing. The result is mostly consistent with what we concluded from Fig.

14: the resolved eddy contribution decreases in magnitude with grid spacing while

subgrid-scale contributions increase with grid spacing. The trend in the net flux

shows that the subgrid-scale contributions produce too much PV flux relative to the

high-resolution results. By grid spacing of 4x = L/3.7 the flux is nearly twice that

computed at 4x = L/56.

Further details can be found in EQ08.

G. Summary

The mean and turbulent behavior of a breaking mountain wave has been explored

using an ensemble of large-eddy simulations.

The resolved-scale TKE production in the breaking wave is shown to be driven

primarily by shear generation. This generation occurs mainly along the upper edge
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(g) total, ∆x = 10∆ (h) resolved, ∆x = 10∆ (i) subgrid, ∆x = 10∆

Fig. 14. (a) Total dissipative PV flux L jPV
y /N2U2 [see (2.43)] and (b) the re-

solved-scale and (c) subgrid-scale contributions to the flux [c.i. = 0.1; color

shading as in Fig. 13] for ∆x = ∆y = ∆. As in (a)–(c) except for grid spacings

of (d)–(f) 3.75∆ and (g)–(i) 10∆. (d)–(i) show Ut/L = 17.5, while (a)–(c)

show the average over 17 ≤ Ut/L ≤ 18. Solid lines in each panel show θ̄/NU

[c.i. = 1].
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Fig. 15. Area-averaged PV fluxes as a function of grid spacing at time Ut/L = 17.5.

Shown are the total PV flux L < PV
y > /N2U2 (dashed-triangle), the net

resolved-scale (resolved-scale eddy + background viscous) part of the flux

(solid-square), the subgrid-scale parameterized eddy flux (dash-dot with solid

circles), and the fourth-order filter contribution (dotted with open circles).

The resolved-scale eddy term is shown by stars (no line), with the back-

ground viscous part then being the difference between the net resolved-scale

and resolved-scale eddy parts.
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of the lee-side shooting flow, where the mean-flow Richardson number is persistently

less than 0.25. To a first approximation, the shear generation is balanced by the

TKE dissipation. In term of TKE evolution, shortly after the onset of wave breaking

a burst of TKE occurs near the ground with maximum TKE of nearly 0.5U 2. The

burst then dissipates and the TKE maximum shifts upstream and aloft and decays

with time. The TKE pattern becomes roughly steady after time Ut/L = 20.

The dissipation of mean-flow wave energy is due mostly to the turbulent momen-

tum fluxes and their tendency to act counter to the mean-flow disturbance wind. The

resulting momentum dissipation acts mostly in the upper half of the lee-side shooting

flow. This deceleration of the shooting flow leads to a loss in mean-flow Bernoulli

function and the production of a cross-stream mean-flow PV flux.

The dependence of the eddy fluxes on the grid spacing was explored by computing

a series of ensembles with grid spacings varying from L/56 to L/3.7. At resolution of

4x = L/56, the fluxes are mostly resolved. However, with increasing grid spacing the

resolved-scale turbulent fluxes decline while the parameterized fluxes become larger.

For our chosen parameter values the parameterization is found to produce too much

PV flux. As a result, the area-averaged PV flux at grid spacing L/3.7 is almost twice

that computed at L/56.
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CHAPTER III

BACKGROUND AND OBJECTS FOR SEA BREEZE STUDY

As one of the oldest subjects in meteorology, the phenomena associated with sea

breeze have been mentioned for over two hundred years. A variety of sea breeze

characteristics has been documented. Many studies have investigated local features

of the sea breeze. A few are about the mesoscale wave signal of sea breeze and the

relation between sea breeze wave response and convective initiation, which are the

main interest of our study. The following sections will briefly introduce our current

understanding of each aspect. Section B will describe the motivations and objectives

for the sea breeze study.

A. Background for Sea Breeze Study

1. Local features of sea breeze

The local sea breeze circulation is a closed mesoscale circulation in the vertical as

predicted by the Bjerknes circulation theorem ([80]). However, this description is

an oversimplification. The sea breeze is a complicated system which contains several

components ([22]): sea breeze circulation, sea breeze gravity current, sea breeze front,

sea breeze head, Kelvin-Helmholtz billows and convective internal boundary layer

(Figure 16).

The sea breeze density current is a landward flow of the marine air ([81], [82]). It

is caused by the different-density air over the land and the sea and the occurrence of

it has been reproduced in numerous laboratory studies ([81], [34], [35]) and confirmed

in observation studies ([83]). The top of the density current has strong shear, which

often produces Kelvin-Helmholtz billows. As the density current comes onshore, the
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Fig. 16. Schematic sea breeze system. Details are discussed in the text.

lower part of the current comes in contact with the ground and becomes warmer. This

leads to a turbulent lower layer, which is referred to the convective internal boundary

layer ([84]; [85]).

The sea breeze front is the leading edge of the sea breeze density current. It is

regarded to play an important role in initiating and enhancing the thunderstorms in

the sea breeze ([86], [87] and [85]) and lifting pollutants aloft ([88],[89]). The formation

and character of the sea breeze front have been well documented in observations and

numerical models ([32], [90], [91], [92], [93], [94], [87] and so on). The sea breeze front

is deeper than the gravity current behind it, with the top of sea breeze front referred

to as the sea breeze head. Note that the sea breeze front is characterized by the

nonlinear processes, which makes it impossible to be modeled by linear simulations

([95]).

Since these local features of the sea breeze can be observed directly, their charac-

ter has been studied thoroughly through different approaches, including observational,

numerical and laboratory. Knowledge of the local features of the sea breeze has been

well-established on the basis of these numerous studies.
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2. Mesoscale wave signal of sea breeze

A few studies have pointed out that the sea breeze also has a mesoscale wave signa-

ture. [36] were the first to discuss this wave response in terms of a linear sea-breeze

model with a specified oscillating temperature gradient. The character of the waves

depended on latitude and such a wave was most prominent at the equator. In their

subsequent nonlinear study, [96] found that the mesoscale waves were weaker than in

the linear model in the tropics.

This idea was later explored in greater detail by [37, hereafter R83], who consid-

ered the linear theory for the problem of an oscillating heat source in a resting and

frictionless background state. R83 showed that the solution is a propagating wave

response whenever the Coriolis parameter f is smaller than diurnal frequency ω (i.e.,

equatorward of 30o latitude) while the sea breeze problem is elliptical when f > ω.

The circulation of the linear sea breeze is π out of phase with the heating in the

tropics while the circulation is in phase with the heating when f > ω. The vertical

scale of the sea breeze is set externally by the vertical scale of the heating, with the

length scale varying with latitude as |f 2 − ω2|−1/2.

[38] extended many of these ideas to a nonlinear context using numerical simula-

tions. They also concluded that the sea breeze had fundamentally different behavior

when f > ω and f < ω, which meant that the linear model to some extent could

capture the basic dynamics of the complex nonlinear phenomena. [39] extended the

linear theory of R83 to include aperiodic heat forcing. They also analyzed the time

scale of the wave phenomena of sea breeze in the tropics and pointed out that it would

take a long time to observe the internal-inertio wave in reality.
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3. Sea breeze wave response and convective initiation

Recently, observational studies such as [40] and [41, 42] have suggested that diur-

nal coastal gravity waves may play a role in initiating convection far offshore. The

hypothesis of a diurnal signal being propagated through gravity waves was first men-

tioned by [40] on the base of CLAUS satellite observation. With the CLAUS data,

the oscillation of mean brightness temperature showed that well organized convection

mainly appeared within the region where the orographic influence was large. This

implied that the mountain effect was possibly important. The propagation speed of

the diurnal signal was between 15 and 20 m/s which was consistent with a gravity

wave speed. According to these phenomena, the results suggested that gravity waves

might be a possible mechanism of the diurnal cycle of the oceanic convection and that

this gravity wave was emanated by the diurnal heat anomaly of the elevated terrain.

The gravity wave mechanism assumption was then examined by a series of studies

([41], [97], [42]) from the perspective of observations and numerical simulations. Sen-

sitivity experiments showed that the presence of the mountain was a dominant factor

for the rainfall pattern. In their results, the observed night / morning offshore con-

vection seemed to be activated by a wave of temperature anomaly. The propagation

speed of the temperature anomaly was consistent with the linear hydrostatic gravity

wave speed, leading the authors to infer that the initiation and propagation of off-

shore convection were through gravity waves. Since the temperature anomaly spread

out from land to sea, they concluded that the forcing for the diurnal temperature

wave was uneven land heating which was enhanced by the elevated mountain. The

authors suggested that the properties of the waves were not fundamentally changed

by their interaction with moist processes.
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B. Motivations and Objectives

The gravity wave hypothesis of Mapes and others has received significant attention

in recent years. Researchers have broadly used this proposition to explain the diurnal

cycle of rainfall over the coastal region ([98]; [99]; [100] and so on). However, from the

theory perspective the detailed understanding of these waves is limited to relatively

simple cases–particularly, the no-wind and no-terrain case studied by R83 and others.

The role of the background wind and the terrain in these flows has by comparison

received relatively little attention.

With such motivation in mind, the general objective of this project is to explore

the mesoscale wave aspects of the sea breeze from an idealized theoretical and model-

ing perspective. Our particular interest in this work will be the role of the background

wind and the terrain in modifying the wave response. More specifically, the proposed

study aims to address three goals of increasing complexity:

• To extend the linear wave theory of R83 to include the effects of background

wind.

• To explore the combined effects of wind and topography on the linear wave

response.

• To address the nonlinear behavior of the system by considering forcing of in-

creasing amplitude.

To keep the problem tractable, for all three objectives our attention is limited to 2D

flow with no background rotation (i.e., the equatorial case)



43

CHAPTER IV

LINEAR THEORY CALCULATIONS FOR THE SEA BREEZE IN A

BACKGROUND WIND: THE EQUATORIAL CASE

A. Chapter Outline

A useful starting point for understanding nonlinear phenomena (like the sea breeze)

is to first understand the corresponding linear problem. There is a well-established

and well-known linear theory for the sea breeze when there is no terrain and when

the background wind is zero (the Rotunno solution). But there is no corresponding

solution for the case with background winds.

The current study seeks to extend the linear theory of R83 by including the

effect of background wind on the sea breeze wave response, which, to the best of our

knowledge, has never been explored analytically. Section B gives the basic equations

and the associated Fourier transform solution. Section C revisits the no-wind linear

theory of R83. The solution with the effect of the background wind is provided in

section D. The spatial structure of the sea breeze wave response is discussed in terms

of group propagation in section E. Summary is presented in section F.

B. Basic Methods

1. Basic equations and scaling parameters

We consider a 2D, Boussinesq and hydrostatic flow as linearized about a uniform

background state with background wind speed U . Attention is limited to the equato-

rial case so that the Coriolis parameter is taken to be zero. The primitive equations
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in dimensional form (as indicated by asterisks) are then given by

∂u∗

∂t∗
+ U

∂u∗

∂x∗
= −∂P

∗

∂x∗
(4.1)

∂P ∗

∂z∗
= b∗ (4.2)

∂b∗

∂t∗
+ U

∂b∗

∂x∗
+N2w∗ = Q∗ (4.3)

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0 (4.4)

where u∗ and w∗ are the disturbance velocities in x∗ and z∗ directions; P ∗ is the

Boussinesq disturbance pressure; b∗ is the buoyancy; and N is the background state

static stability. Q∗ is the diabatic heating profile, which in principle includes both

the turbulent transfer of heat by boundary-layer eddies and the effects of radiation.

Following R83, we simplify the problem as much as possible by letting Q∗ be strictly

periodic in time. Specifically

Q∗ =
Q0

π

(

π

2
+ tan−1 x

∗

L

)

exp

(

−z
∗

H

)

cos(ωt∗), (4.5)

where Q0, L, H and ω are the constant heating amplitude, half width of the coastal

zone, heating depth and diurnal frequency, respectively. Here the coastline is at

x∗ = 0 with land to the right (x∗ > 0) and sea to the left.

The lower boundary is assumed flat so that w∗ = 0 at z∗ = 0. Apart from the

diurnal oscillations in b∗ and P ∗ over land, the disturbance is assumed to vanish as

|x∗| → ∞.1 The domain is unbounded aloft with a radiation condition applied as

z∗ → ∞.

1The basis for this assumption is that the velocity field responds only to gradients
in the heating rather than the heating itself. To see this, consider a problem in which
the heat source extends uniformly to infinity in both directions. The pressure and
buoyancy in this problem both oscillate, but no horizontal gradients are formed and
no motion occurs [cf. (4.1) and (4.4), or equivalently (4.12)]. The same holds for our
problem as x→ ∞.
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The system is nondimensionalized using scaling factors derived from the U = 0

solution of R83. Specifically, R83 showed that for a resting background state the

depth scale of the disturbance is set externally by the vertical scale of heating (i.e.,

by H). The horizontal scale is then given by H/δ = NH/ω, where δ = ω/N is the

geometric aspect ratio (depth / length) set by the associated gravity wave dispersion

relation (see R83). The time scale is determined by the period of the heating forcing.

The rest of the scales then follow from the dominant balances in (1)-(4). A list of all

the scaling factors is

x∗ =
NH

ω
x, z∗ = Hz, t∗ =

t

ω
,

Q∗ = Q0Q, u∗ =
Q0

Nω
u, w∗ =

Q0

N2
w,

b∗ =
Q0

ω
b, P ∗ =

Q0H

ω
P,

where again the asterisks indicate dimensional quantities. Substituting the scaling

factors into (4.1) - (4.5), we have a set of nondimensional equations as

∂u

∂t
+ U ∂u

∂x
= −∂P

∂x
(4.6)

∂P

∂z
= b (4.7)

∂b

∂t
+ U ∂b

∂x
+ w = Q (4.8)

∂u

∂x
+
∂w

∂z
= 0 (4.9)

with

Q =
1

π

(π

2
+ tan−1 x

L
)

exp(−z) cos(t), (4.10)

where U = U/NH is the nondimensional background wind speed2 and L = ωL/NH

2Physically, the parameter U measures the size of the background wind speed
relative to the characteristic phase speeds present in the U = 0 case. Since the
depth scale for the R83 solution is H, the relevant phase speed is then NH. The
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is the nondimensional half width of the coastal zone. It is obvious that the only two

control parameters for the nondimensional problem are then U and L.

Solutions are sought in terms of a streamfunction ψ, defined by

u =
∂ψ

∂z
and w = −∂ψ

∂x
, (4.11)

Reducing (4.6)-(4.9) to a single equation in ψ then gives

(

∂

∂t
+ U ∂

∂x

)2
∂2ψ

∂z2
+
∂2ψ

∂x2
= −∂Q

∂x
. (4.12)

2. Fourier transform solution

The Fourier transform of (4.12) gives

(

∂

∂t
+ iUκ

)2
∂2ψ̃

∂z2
− κ2ψ̃ = −e−κLe−z e

it + e−it

2
, (4.13)

where κ is the nondimensional horizontal wavenumber and ψ̃ is the Fourier transform

of ψ defined by

ψ̃(κ, z, t) =

∫ ∞

−∞

ψ(x, z, t)e−iκx dx.

Solutions are obtained by first decomposing the forcing into the eit and e−it modes

and then solving for each mode independently. Writing the solution for a given mode

in the form

ψ̃(κ, z, t) = ψ̂(κ, z)e±it (4.14)

and substituting into the wave equation (4.13) then gives

ω̂2d
2ψ̂

dz2
+ κ2ψ̂ =

1

2
e−κLe−z, (4.15)

combination U/NH is also sometimes referred to as the thermal Froude number (e.g.,
[101], chap. 6)
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where ω̂ = ±1 + Uκ is the dimensionless intrinsic frequency, with the ± matching

that given in (4.14).

Since ψ is real, we can specify κ so as to always be positive. The eit and e−it

modes then correspond to leftward and rightward propagating waves relative to the

ground, respectively. The phase speed of the waves is given by cx = ∓1/κ, showing

that longer waves propagate faster than shorter waves.

For concreteness we restrict attention to the case U ≥ 0. (The U < 0 case is

simply the reflection about the x = 0 axis.) In the flow-relative (or intrinsic) frame,

the specified heat source is then seen as propagating to the left at speed U , which

causes the Fourier modes to be Doppler shifted. For leftward-moving (or eit) modes,

the intrinsic propagation is faster than the ground-relative value, implying that ω̂ for

these modes is greater than the diurnal frequency (i.e., ω̂ > 1). For rightward-moving

(or e−it) modes with phase speeds greater than U (i.e., long waves with 1/κ > U),

the intrinsic propagation is slower than the ground-relative value so that the intrinsic

frequency satisfies ω̂ > −1. Rightward-moving waves with phase speeds less than U

(i.e., short waves with 1/κ < U) are seen as leftward moving in the intrinsic frame

and thus have ω̂ > 0.

The solutions to (4.15) are obtained in terms of Green’s functions in the vertical

with a radiation condition applied aloft. The result is

ψ̂(κ, z) =















−e−κL(eimz − e−z)/(2ω̂2 + 2κ2), ω̂ > 0

−e−κL(e−imz − e−z)/(2ω̂2 + 2κ2). ω̂ < 0

(4.16)

where m = κ/|ω̂| is the nondimensional vertical wavenumber (defined so as to always

be positive). Note that the selection of the vertical mode is determined by the intrinsic

phase propagation rather than the phase propagation relative to the ground. Leftward

propagating modes in the intrinsic frame (ω̂ > 0) all have negative phase tilts (i.e.,
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eimz modes) while rightward propagating modes in the intrinsic frame (ω̂ < 0) all

have positive phase tilts (e−imz modes). The solution for a given mode then follows

from (4.14), with the full solution to (4.13) being the superposition of the eit and e−it

cases.

According to (4.11), the Fourier transform for w is given by w̃ = −iκψ̃, while

the solution for ũ follows from the appropriate z derivatives of (4.16).

C. Review: The No-Wind Case

The solution for U = 0 has been described in some detail by R83. Here the basic

properties of this solution are reviewed in preparation for the U 6= 0 case described

in section D.

1. Computation

Setting U = 0 in (4.12) leads to the Fourier solution

ψ = I1 + I2

where

I1 = − 1

2π

∫ ∞

0

e−κL

κ2 + 1
(eimz − e−z)ei(κx+t) dκ (4.17)

and

I2 = − 1

2π

∫ ∞

0

e−κL

κ2 + 1
(e−imz − e−z)ei(κx−t) dκ, (4.18)

consist of the leftward and rightward propagating modes, respectively. It should be

understood that only the real parts in (4.17) and (4.18) are physically meaningful.

As in section B, the vertical wavenumber m is defined so that m = κ. Solutions for

u and w follow from the derivatives of (4.17) and (4.18), as described in section B.

Inspection of the integrals shows that the integrands in (4.17) and (4.18) are well-
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behaved everywhere along the real κ axis. Numerical computation of the integrals is

thus straightforward and follows methods outlined for the I1 case in the appendix.

2. Basic morphology

With U = 0 the only nondimensional control parameter for the flow is the coastal

width L, with the figures in R83 being for L = 0.2. An analogous calculation for

L = 0.1 is shown in Fig. 17. The solution is localized along two parallel wave beams

with centers at z = x and z = −x. As shown by R83, the slopes of these wave beams

correspond to energy propagation for diurnal gravity modes. In the present case the

energy propagates away from the heat source gradient near x = 0.

With L = 0.1, the vertical scale of the wave beams is set by the heating depth,

while the dominant horizontal scale is obtained through the aspect ratio δ (as in

section B). These length and depth scales form the basis of our scaling, so that in

nondimensional terms both the width and depth of the wave beams are roughly one.

The phase lines of the modes propagate downward as time evolves (as seen in Fig.

17a,c or 17b,d). Surprisingly, the cross-coastline winds are nearly π out of phase with

the heating. Broadly speaking, this π phase lag results from the π/2 lag between the

heat source and the temperature (and hence pressure) gradient, as well as the π/2

lag between the pressure gradient and the wind. Detailed explanation can be found

in R83.

Finally, Figs. 17e,f exhibit the decomposition of the horizontal velocity u into

leftward and rightward propagating modes. As expected, the branch at x > 0 con-

sists of rightward propagating modes, while branch at x < 0 consists of leftward

propagating modes.
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Fig. 17. Horizontal and vertical velocity components for U = 0 and L = 0.1. Hor-

izontal velocity u at times t = (a) 0, (c) π/2 [contour interval (c.i.) = 0.1;

solid contours, positive; dotted contours, negative]. Vertical velocity w at

times t =(b) 0, (d) π/2 [c.i. = 0.05 with zero contour straddled]. (e) Left-

ward-moving (or I1) and (f) rightward-moving (or I2) parts of u at t = π/2.

Solutions for t = π and 3π/2 are simply the negatives of the solutions at t = 0

and π/2, respectively.
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3. L dependence

For reference, suppose we pick characteristic dimensional values of N = 0.01 s−1, ω =

2π day −1, H = 800 m and L = 10 km. Combining these then gives a characteristic

nondimensional coastal width of L ∼ 0.1, as considered above. But in reality, L might

be larger or smaller than this value, depending on the values N , H and L in a given

case.

The sensitivity of the U = 0 solution to changes in L is illustrated by Figs. 17c

and 18. As expected, for small L (Figs. 18a and 17c) the depth scale is set by the

heating depth while the length scale follows from the dynamical aspect ratio. The

result is that the dominant horizontal and vertical scales are both roughly independent

of L for small L, with the dominant wavenumber given by m = κ ' 1. However,

according to (4.17) and (4.18) the power at this dominant wavenumber varies roughly

as e−L, so that as L increases the amplitude of the solution becomes smaller (compare

Figs. 17c and 18a). As L is made still larger (as shown in Fig. 18b with L = 0.5 and

Fig. 18c with L = 1), the scales start to change so that the horizontal scale is set by

L while the vertical scale follows from the aspect ratio. And the amplitude continues

to decrease.

D. Adding the Background Wind

The character of sea breeze in a background wind is examined in this section. As will

be seen, the Doppler shifting of the modes can lead to significant differences from the

U = 0 solution.
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Fig. 18. Horizontal velocity u at time t = π/2 with coastal width L = (a) 0.01; (b)

0.5; (c) 1 [contours as in Fig. 1].



53

1. Computation

With U 6= 0 in (16), the Fourier integral solution becomes

ψ = I1 + I2 + I3

where the three different branches are defined by:

• Left-moving waves with ω̂ = 1 + Uκ > 0

I1 = − 1

2π

∫ ∞

0

e−κL

κ2 + (1 + Uκ)2
(eimz − e−z)ei(κx+t) dκ (4.19)

• Right-moving waves with ω̂ = −1 + Uκ < 0

I2 = − 1

2π

∫ κU

0

e−κL

κ2 + (Uκ− 1)2
(e−imz − e−z)ei(κx−t) dκ (4.20)

• Right-moving waves with ω̂ = −1 + Uκ > 0

I3 = − 1

2π

∫ ∞

κU

e−κL

κ2 + (Uκ− 1)2
(eimz − e−z)ei(κx−t) dκ (4.21)

The cutoff wavenumber κU = 1/U in (4.20) and (4.21) is the critical wavenumber at

which the rightward propagating phase speed matches the background wind speed.

The vertical wavenumber is m = κ/|ω̂| for all three branches.

It is worth noting that the integrands in both (4.20) and (4.21) become singular

in the limit κ→ κU , since ω̂ = −1+Uκ→ 0 in this limit so that m→ ∞. The result

is that the e±imz terms oscillate infinitely fast with κ in this limit, which in turn

complicates the numerical computation of the Fourier integrals. This is especially

true for the horizontal velocity u = ∂ψ/∂z, since the vertical derivative produces an

amplitude singularity as well as a singular oscillation. Our approach to overcoming

these problems is based on a method first proposed by [102] in the context of flow past

topography. Broadly speaking, the basis of the method is to first remove the singular

oscillation with an analytically integrable function and to then apply the numerical
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quadrature only to the difference integral. Details of the method can be found in the

appendix.

2. Basic inferences

To simplify terminology, we refer to the flow pattern illustrated by Fig. 1 as the R83

pattern and to the wavenumbers near m ∼ 1 (which dominate the U = 0 solution)

as the R83 modes. Inspection of (4.19)-(4.21) then suggests two main impacts of the

background wind: (i) the R83 modes in I1 and I2 will become Doppler shifted and

dispersive; and (ii) the contribution from I3 will become stonger as U increases. Here

we briefly consider the U and L dependence of these effects.

For sufficiently small U the cutoff wavenumber κU in (4.21) is relatively large

and the contribution from I3 is therefore negligible. The two branches I1 and I2 in

this limit are then analogous to the U = 0 cases in (4.17) and (4.18), except that

the R83 modes in the branches will be Doppler shifted to higher and lower intrinsic

frequencies. Since the scale of R83 modes is roughly κ ≈ m ∼ 1, the extent of this

frequency shifting will be determined premarily by U (and not by L).

As U increases, κU becomes smaller and the I3 modes will gradually become

more important. Since ω̂ for these modes is dominated by Uκ (instead of the diurnal

frequency), the general behavior of these I3 modes is expected to be broadly similar

to flow past a stationary heat source (or equivalently to flow past topography). And

as in the stationary heating or topography problems, we expect that the dominant w

forcing for these modes will be near κ ∼ 1/L. A reasonable expectation then is that

the I3 modes will become important only once κU < 1/L, or equivalently U/L > 1.
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3. U dependence

The U dependence of the solution for the case L = 0.1 is illustrated in Figs. 19 and

20. Figure 19 shows the vertical velocity for increasing values of U , while Fig. 20

shows the decomposition into I1, I2 and I3 modes. For reference, thick solid lines

in Fig. 20 show the raypaths for the U = 0 solution, while the thick dashed lines

show the raypaths for the R83 modes (i.e., modes with m ∼ 1) as Doppler shifted for

U 6= 0. Details of the raypath calculations can be found in section E.

As expected, for U = 0.075 the solution in Fig. 19a is composed primarily of the

I1 and I2 branches (see Figs. 20a–c). For I1 the Doppler shifting of the modes leads to

higher intrinsic frequencies, and the phase lines and raypaths for this branch are thus

more steeply inclined to the vertical than for U = 0. The energy of the branch is also

more widely dispersed, with shorter wavelengths having steeper energy propagation

(see discussion in section E). By contrast, the I2 modes are shifted to lower | ω̂ | and

the phase lines and raypaths are therefore less steeply inclined (Fig. 20b).

With increasing U the raypaths for the I1 and I2 R83 modes become further

rotated from the U = 0 case (see the second through fourth rows in Fig. 20). However,

a more significant change is the gradual appearance of the I3 branch. The I3 branch

is composed of rightward propagating waves (relative to the ground) with negative

phase tilts, and the character of this branch is thus fundamentally different from I1

and I2. Qualitatively, the wave pattern for I3 closely resembles flow past a steady

heat source or a topographic obstacle (see, e.g., [101], chaps. 5 and 6) rather than a

stationary diurnal oscillation as in Fig. 17.

As suggested in section D2, the I3 modes in Fig. 20 only become significant

once U/L is sufficiently large (roughly U/L ≈ 2 in present case). For U = 0.25 and

U = 0.625 the flow consists of relatively high wavenumber (since κU is still relatively
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Fig. 19. Vertical velocity w at t = π/2 with L = 0.1 and U = (a) 0.075, (b) 0.25,

(c) 0.625; (d) 1.25 [c.i. = 0.04; solid lines, positive; dotted lines and shaded,

negative].
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Fig. 20. I1, I2 and I3 branches of vertical velocity w [c.i. = 0.04] at t = π/2 with

L = 0.1 and different background wind U . (a) I1, (b) I2 and (c) I3 with

U = 0.075. As in (a)–(c), but with (d)–(f) U = 0.25, (g)–(i) U = 0.625

and (j)-(l) U = 1.25. Thick solid lines for I1 and I2 show the ray paths

for the U = 0 solution of R83. Thick dashed lines show ray paths for the

Doppler-shifted R83 modes.
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large) I3 modes superimposed on a Doppler tilted R83 pattern (see Figs. 19b,c and

the second and third rows of Fig. 20). However, by U = 1.25 (or U/L = 12.5) the I3

branch is the dominant part of the solution.

Figure 21 shows the horizontal velocity u corresponding to the vertical velocity

shown in Fig. 19. The general trend in the solution with increasing U—Doppler

tilting of the R83 modes and the gradual increase in I3—is the same as for vertical

velocity. The main difference is that for large U , the I3 part of the u disturbance is

localized downstream and closer to the ground (compare Figs. 19d and 21d). Further

discussion of this point is given in section E3. Note that the U dependence in Figs. 19

and 21 explains some of the asymmetric features observed in previous analytical and

modeling studies, such as that of [29].

4. Time evolution

Figure 22 displays the time evolution for both the decompostion and total vertical

velocity fields with U = 0.875 and L = 0.1. As in the U = 0 case (cf. Fig. 17) the

phase lines in the I1 and I2 branches (Figs. 22a,d) propagate downward through the

respective wave envelopes with time. However, in the ground-relative frame the I3

modes are rightward propagating, and the phase lines for the I3 branch (Figs. 22b,e)

thus propagate upwards and downstream. The phase evolution for the total fields

thus has elements of both these behaviors.

5. L dependence

The L dependence of the I1, I2 and I3 modes at fixed U = 0.5 is illustrated by Fig. 23.

As expected, for the I1 and I2 branches the Doppler tilting and general wave patterns

are essentially independent of L (for sufficiently small L). However, the amplitudes

of the two branches increase as L decreases, much as in the U = 0 case of section C3.
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Fig. 21. Horizontal velocity u at t = π/2 with L = 0.1 and U = (a) 0.075, (b) 0.25, (c)

0.625 and (d) 1.25 [c.i. = 0.1; solid lines, positive; dotted lines and shaded,

negative].



60

0-4 4
0

4

    8

z

x

(h) I3 (t = 2π/3)

0-4 4
x

0-4 4
x

0

4

    8

z

0

4

    8

z

(a) I1 + I2 (t = 0) (b) I3 (t = 0)

(d) I1 + I2 (t = π/3) (e) I3 (t = π/3)

        (c) w (t = 0)

        (f) w (t = π/3)

        (i) w (t = 2π/3)           (g) I1 + I2 (t = 2π/3)

Fig. 22. Time evolution of both decomposed and total vertical velocity w [c.i. = 0.04]

with U = 0.875 and L = 0.1. Sum of I1 and I2 modes at t = (a) 0, (d) π/3

and (g) 2π/3. As in (a), (d), (g), but for (b), (e), (h) I3 modes and (c), (f),

(i) total w.
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For the I3 branch the disturbance becomes relatively more important (compared to

I1 and I2) as L decreases so that U/L increases.3 And as in Fig. 20, the noticeable

onset of the I3 branch occurs roughly near U/L ≈ 2.

Taken together, the results shown in Figs. 19–23 generally reinforce the basic

inferences made in section D2—specifically, that the I1 and I2 branches are determined

largely by U while the importance of the I3 branch (relative to I1 and I2) depends

primarily on U/L. Various different values of U and L can thus lead to various

combinations of these two effects (as seen by comparing Figs. 20 and 23). In the

following section we consider the overall spatial structures of these three branches in

greater detail.

E. Group Propagation and Wave Scales

The present section explores the structure and spatial scales of the three branches in

terms of group propagation arguments.

Generally, the solution (4.19)-(4.21) consists of Fourier wave modes of the form

of exp(iκx+ iλz+ iσt), where in the present case λ = ±m, σ = ±1 and κ is positive.

The dispersion relation for the these Fourier modes can be described uniformly by

σ + Uκ =
κ

λ
(4.22)

where the sign of λ accounts for direction of intrinsic phase propagation. The corre-

sponding group propagation is given by

cgx = −∂σ
∂κ

= −1

λ
+ U and cgz = −∂σ

∂λ
=

κ

λ2
,

3To see this, consider the changes in amplitudes for the three branches as L de-
creases. Between L = 0.2 and L = 0.04 in Fig. 23 the amplitudes of the I1 and I2
branches increase by 50%, whereas the increase in the I3 amplitude is nearly a factor
of 3.
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Fig. 23. Decomposition of w [c.i. = 0.04] into I1, I2 and I3 branches for U = 0.5 and

varying L at time t = π/2. (a) I1, (b) I2 and (c) I3 for coastal width L = 0.2.

As in (a)–(c), but for (d)–(f) L = 0.08 and (g)–(i) L = 0.04.
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which implies raypaths of slope

tan θ =
cgz

cgx
=

κ

−λ + Uλ2
(4.23)

where θ is the angle between the raypath and the positive x axis. Note that for given

U the raypath for fixed κ and λ is a straight line (i.e., θ is fixed).

Since σ is known, (4.22) and (4.23) can be combined to give the angle of the

raypath in terms of either κ or λ independently. The result is

tan θ = −(σ + Uκ)2

σ
or tan θ = − σ

(1 − Uλ)2
. (4.24)

1. I1 modes

For the I1 branch we have σ = 1 and λ = m > 0. Solving (4.24) for the horizontal

and the vertical wavenumbers then gives

κ = (
√
− tan θ − 1)/U and m = (1 −

√

−1/ tan θ)/U (4.25)

where θ must satisfy π/2 < θ < 3π/4 to give both positive κ and m. Inspection of

(4.25) shows that both κ and m are zero at θ = 3π/4 and increase as θ decreases

towards the vertical. Shorter horizontal waves thus have more steeply inclined ray-

paths and smaller vertical wavelengths (compare to Fig. 20). The largest vertical

wavenumber of m = 1/U occurs at θ = π/2.

As described in section D, for small and moderate values of U we expect I1 to

be dominated by modes with m ∼ 1 (i.e., the R83 modes). The raypath for these

R83 modes (shown by the thick dashed line in Figs. 20a,d,g,j) is computed by setting

λ = 1 [or κ = 1/(1 − U)] in (4.24). (For U > 1 the R83 modes do not exist—since

the maximum wavenumber of m = 1/U is less than 1—and we simply set θ = π/2).

Note that the R83 raypaths give a good sense of the maximum disturbance envelope
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even for relatively large U .

2. I2 modes

For the I2 branch we have σ = −1 and λ = −m < 0. Solving (4.23) for the horizontal

and the vertical wavenumbers then gives

κ = (1 −
√

tan θ)/U and m = (
√

1/ tan θ − 1)/U (4.26)

where θ must satisfy 0 < θ < π/4 to give positive κ and negative λ. Inspection

of (4.26) indicates that both κ and m are zero at θ = π/4 and increase as θ de-

creases. Shorter horizontal waves thus have less steep raypaths and smaller vertical

wavelengths. The largest horizontal wavenumber of κ = 1/U occurs at θ = 0.

As for I1, the solution for I2 is dominated by modes with m ∼ 1 (i.e., the R83

modes). The raypath for these R83 modes (shown by the thick dashed line in Fig.

20b,e,h,k) is computed by setting λ = −1 [or κ = 1/(1 + U)] in (24).

3. I3 modes

For the I3 branch we have σ = −1 and λ = m > 0. The horizontal and the vertical

wavenumbers are then given by

κ = (
√

tan θ + 1)/U and m = (1 +
√

1/ tan θ)/U (4.27)

where θ satisfies 0 < θ < π/2 to give both positive κ and λ. The horizontal wavenum-

ber increases with increasing θ, with a minimum value of κ = 1/U occuring at θ = 0.

The vertical wavenumber decreases with θ, reaching m = 1/U at θ = π/2.

Note that these results provide some insight into the differences between u and

w as observed in Figs. 19 and 21. Specifically, the u field has more amplitude near

κ = κU than does the w field [since ∂ψ̂/∂z → ∞ as κ → κU for I2 and I3—see the
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appendix]. As seen in (4.26) and (4.27), for I2 and I3 the κ ∼ κU modes propagate

close to the ground.

4. Discussion: Wave scales at large U and U/L

Our group velocity results suggest that when U and U/L are large, the dominant

spatial scales in the solution are fundamentally different from those at U = 0. For

large U the I1 part of the disturbance is found mainly over the coastline (cf. Fig. 20),

and the dominant vertical scale for the I1 branch is then 1/m ∼ U . In dimensional

terms this translates to U/N , which is also the scale for flow past a steady, non-

oscillating source—that is, for large U and U/L the flow past the heating gradient

dominates the diurnal oscillation. This U/N scale also describes the large κ parts of

I3, which are likewise found over the coastline.

The I2 disturbance at large U is found mainly near θ = 0 (cf. Fig. 20), where

the dominant horizontal scale is 1/κ ∼ U . In dimensional terms this scale is U/ω,

which measures the distance traveled by a fluid particle during one oscillation cycle.

The basis for this advective scale is seen most easily from (4.3). At θ = 0 we have

w∗ = 0, so that (4.3) becomes

∂b∗

∂t∗
+ U

∂b∗

∂x∗
= Q∗

showing that the buoyancy is simply advected at speed U while undergoing heating

and cooling by the source. The anomaly at any point downstream thus retains a

memory of the heating phase present when the particle first entered the coastal zone,

and the distance between relatively warm and relatively cold particles is measured by

the advective distance U/ω. This U/ω scale also describes the smaller κ parts of I3,

which are likewise found near θ = 0.

These scales for large U and U/L are illustrated by Fig. 24, which shows the w
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disturbance for varying values of U and L, but with U/L held fixed at 15. The first

column of the figure shows the total fields as displayed with the standard diurnal axis

scalings. The second and third columns show the I1 + I2 and I3 decomposition as

displayed on axes using the modified scales described above. As U increases the fields

in the first column expand spatially, reflecting the U dependence of the dominant

spatial scales. But when rescaled with the appropriate large U and U/L scalings,

the disturbance structure is relatively uniform (apart from small changes in I2 as U

becomes sufficiently large).

It is worth pointing out that the importance of I3 (as measured by the ratio of I3

amplitude to I1 + I2 amplitude) in Fig. 24 is essentially constant. This reinforces the

notion that the relative amount of power in I3 is determined largely by U/L (since

U/L in the figure is fixed).

F. Summary

Building upon R83, this study has explored the linear wave response to a diurnally

oscillating heating gradient in a background wind. This model can be considered a

simple analog to the equatorial coastal circulation. Under a diurnal wave scaling,

the wave response is a function of two control parameters: a nondimensional coastal

width L = ωL/NH and a nondimensional windspeed U = U/NH.

For U 6= 0 the Fourier integral solution consists of three distinct wave branches:

I1, I2 and I3. The I1 and I2 branches correspond directly to the two branches described

by R83, except with Doppler shifting and associated tilting of the raypaths. The

extent of this Doppler shifting is determined directly by U , with larger U leading to

greater raypath tilting and more widely dispersed wave energy.

The I3 branch exists only for U 6= 0 and is shown to be broadly similar to
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Fig. 24. Total w and decomposition into I1 + I2 and I3 branches for fixed U/L = 15 at

time t = π/2. (a) Total w, (b) I1 + I2 and (c) I3 [c.i. = 0.0267] with U = 2.25

and L = 0.15. As in (a)–(c), but for (d)–(f) U = 1.5 and L = 0.1 [c.i. = 0.04]

and (g)–(i) U = 0.75 and L = 0.05 [c.i. = 0.08]. (a), (d) and (g) use standard

diurnal axis scalings, all other panels use modified large U and U/L scalings.

Contours vary with 1/L to account for increased amplitude with decreasing

L.
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flow past a stationary heat source or a topographic obstacle. The importance of

this branch (relative to I1 and I2) increases as U/L increases, with the amplitude

becoming similar to the other two branches once U/L ∼ 2. For typical dimensional

parameters (such as those given in section C3), a characteristic threshold wind for the

importance of the I3 mode is roughly U ∼ 1.5 m/s (with smaller L implying smaller

thresholds). For still larger U/L, the I3 branch becomes the dominant part of the

solution.

The spatial scales present in all three branches can be explained reasonably

well using group velocity arguments. At large U and U/L, the dominant scales are

fundamentally different from the U = 0 case.

It should be emphasized that we do not expect our simple linear theory to provide

an accurate description of the sea breeze in its entirety. Most notably, the model

completely misses the low-level sea-breeze front and the associated density current.

However, it is reasonable to expect that the model provides some insight into the

larger-scale wave response associated with the sea breeze. Such waves are difficult to

observe directly but have been noted in some recent real-world modeling studies (e.g.,

[42]). There has also been speculation that such coastally generated gravity waves

are involved in the observed diurnal propagation of convection off tropical coastlines

([41] ; [40],among others). At the very least, the current study provides a simple

conceptual reference point for the study of these waves.

G. Appendix: Computational Methods for I2 and I3

As noted in section C1, the integrals I2 and I3 in (4.20) and (4.21) feature rapid

oscillations in the integrands near κ = κU . These oscillations lead to poor numerical

resolution near the singularity, which in turn compromises the accuracy of the quadra-
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ture. The problem is particularly acute for u = ∂ψ/∂z, since for u the amplitude is

singular as well as the phase.

To address this problem we use a method first introduced by [102] in the context

of rotating flow past topography. Details of the method are given in section 2 below.

However, we begin by briefly describing the more conventional methods used for I1.

1. Computation of I1

Inspection of (4.19) shows that the integrand is well-behaved for all κ > 0, and

computation of the integral is therefore straightforward. In the present study we use

the substitution κ = κ1(1/s−1) to map the indefinite interval 0 ≤ κ <∞ to the finite

range 0 < s ≤ 1. A quadrature using the trapezoidal rule is applied using a uniform

discretization in s. Varying the parameter κ1 shifts the point density to smaller or

larger κ, with half the total points at κ < κ1 and half at larger κ. The choice κ1 = 5

was found to give reasonable results with modest effort.

2. Desingularization for I2 and I3

To account for the singularities in I2 and I3, we use two approaches in combination.

First we identify an integrable function whose behavior at the singular point matches

that of the function to be integrated. Subtracting this matching function from the

integrand then effectively damps the singularity. The second step is to then stretch

the remaining singular oscillation using an appropriate coordinate mapping.

To illustrate, we consider our most singular case, specifically the I3 contribution

to the horizontal velocity u. Taking a vertical derivative of (4.21) gives

∂I3
∂z

= −1

2

∫ ∞

κU

e−κL

κ2 + (Uκ− 1)2
ei(κx−t)(im eimz + e−z) dκ (4.28)

where m = κ/(Uκ− 1). The second term in the last parentheses is well-behaved, but
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the im eimz term has both phase and amplitude singularities as κ→ κ+
U .

To transform to a finite range we use the trigonometric substitution

κ = κU
1

1 − sin θ

which maps (4.28) to

∂I3
∂z

= − 1

2κU

∫ π/2

0

C3(θ) e
−z cos θ dθ − i

2

∫ π/2

0

C3(θ) exp(iκUz csc θ) cot θ dθ (4.29)

where

C3(θ) =
κ2 e−κL

κ2 + (Uκ− 1)2
ei(κx−t)

is a well-behaved amplitude factor. The first integral in (4.29) can be directly dis-

cretized without problems. However, the second integral inherets the original phase

and amplitude singularities as θ → 0+.

To remove these singularities, we note that sufficiently near the singular point the

integrand in (4.29) matches that of a tabulated integral, specifically the exponential

integral E1 (e.g., [103], section 5.1). That is, with a change of variable [102] the

exponential integral can be written for Re(ξ) ≥ 0 as

E1(ξ) =

∫ π/2

0

exp(−ξ csc θ) cot θ dθ (4.30)

which for imaginary ξ has the same singular phase and amplitude behavior as (4.29).

Combining (4.29) with (4.30) then gives

∂I3
∂z

= − 1

2κU

∫ π/2

0

C3(θ) e
−z cos θ dθ

− i

2

∫ π/2

0

A3(θ) exp(iκUz csc θ) cot θ dθ

− i

2
C3(0)E1(−iκUz)

(4.31)
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where the difference amplitude

A3(θ) = C3(θ) − C3(0)

now has a first-order zero at θ = 0+ so that A3(θ) cot θ remains finite.

Because of the cot θ term (4.29), the subtraction step in (4.31) damps the ampli-

tude singularity but leaves a finite-amplitude singular oscillation. To regularize this

oscillation we apply a second coordinate mapping

θ =
π

2
sα (4.32)

with s ranging from 0 to 1. Setting α > 1 causes the singular oscillation near θ = 0+

to be stretched, in the sense that dθ = α(π/2)sα−1ds → 0 as s → 0. The resulting

integrand for 0 ≤ s ≤ 1 then has an order α− 1 zero at the singular endpoint.

Finally, the desingularized integral (4.31) with (4.32) is computed with a trape-

zoidal quadrature using a uniform discretization in s. Similar methods are used to

compute the I2 integral for u as well as the w integrals (which are one order less

singular in amplitude and thus easier to compute).

3. An example

Figure 25 shows an example calculation for the case U = 0.625 with L = 0.1. Shown

in Fig. 25a is a direct quadrature of (4.29)—that is, without the subtraction step

in (4.31) and with α = 1 in (4.32)—using a uniform discretization of ns = 2000

points. The analogous desingularized quadrature of (4.31) with α = 3 and ns = 2000

is shown in Fig. 25b. As can be seen, the direct trapezoidal quadrature of (4.29)

features significant numerical artifacts due to the singular nature of the integrand.

By contrast, in the desingularized case these artifacts are effectively removed.
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Fig. 25. Horizontal velocity u with U = 0.625 and L = 0.1 at time t = π/2. (a)

Direct quadrature of (4.29) with 2000 points and α = 1. (b) Desingularized

quadrature of (4.31) with 2000 points and α = 3.
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CHAPTER V

THE WAVE RESPONSE TO TERRAIN AND NONLINEARITY

A. Introduction

The previous chapter explored coastal wave dynamics for the case of a flat lower

boundary and for a linearized disturbance. In the present chapter we extend this

analysis in two ways: (i) the role of terrain is addressed by adding topography to

the linear problem; and (ii) nonlinear effects are explored through nonlinear model

calculations.

As discussed in chapter III A3, observational studies show that offshore convec-

tion in coastal regions is often tied to the presence of coastal topography. To begin

addressing this issue, we start by adding topography to the linear wave problem of

chapter IV. In the linear problem, the terrain is expected to have three effects on the

disturbance flow: (i) additional interior wave generation due to elevated heating gra-

dients along the terrain slopes; (ii) boundary wave generation due to the disturbance

flow passing over the sloped boundary; and (iii) wave-wave interactions between the

linear sea-breeze response and the background mountain wave. Our first goal in this

chapter is to explore the relative importance of these three effects.

The linear problems described above provide a useful starting point for under-

standing the basic wave dynamics, particularly for small topography. However, the

real problem to be considered is strongly nonlinear. As a first step towards address-

ing this issue, we explore several examples of the nonlinear behavior of the system

by varying the heating amplitude in the context of the nonlinear model described

in chapter II. Exploring the changes in the nonlinear solution as the heat source

increases is our second goal in this chapter.
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The first part of the chapter focuses on the linear problem. The following section

describes the physical context for the linear study and provides an overview of the

associated numerical model and experimental design. Section C examines the role

of terrain in the linear wave response. The three terrain effects described above are

computed through Taylor expansions in small mountain height.

The second part of the chapter discusses the nonlinear problem. Section D takes a

look at some examples of nonlinear phenomena for both zero and non-zero background

wind, and for a range of mountain heights. A summary will be given in the last section.

B. Basic Physics and Computational Methods

1. Linear problem formulation

The problem of flow past coastal terrain has two potential wave sources: (i) the back-

ground flow past the topography; and (ii) the heating gradients due to the coastline

and the terrain. Here our interest is the second source. To isolate this source, we take

a steady nonlinear mountain wave as our background state (as computed through a

nonlinear model run) and then consider the linear disturbance produced when a heat

source is added to the problem.

The basic physical formulation of the problem is same as in chapter IV except

for two differences: (i) terrain is added to the lower boundary; and (ii) instead of

the constant background wind, the steady mountain wave is used as the background

state. To define notation, we divide the total background mountain wave into a

constant upstream wind speed U and a nonlinear wave disturbance u0, w0, etc.. The

disturbance linear response to the heat source is then denoted by u′, w′, etc., so that

the total wind in the x direction (for example) is u = U + u0 + u′. Linearizing the

2D compressible Boussinesq system about the steady mountain wave then gives the
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disturbance system

∂u′

∂t
+ U

∂u′

∂x
+ u0

∂u′

∂x
+ w0

∂u′

∂z
+ u′

∂u0

∂x
+ w′∂u0

∂z
= −∂P

′

∂x
, (5.1)

∂w′

∂t
+ U

∂w′

∂x
+ u0

∂w′

∂x
+ w0

∂w′

∂z
+ u′

∂w0

∂x
+ w′∂w0

∂z
= −∂P

′

∂z
+ b′, (5.2)

∂b′

∂t
+ U

∂b′

∂x
+ u0

∂b′

∂x
+ w0

∂b′

∂z
+ u′

∂b0
∂x

+ w′∂b0
∂z

+N2w′ = Q, (5.3)

∂P ′

∂t
+ c2s(

∂u′

∂x
+
∂w′

∂z
) = 0, (5.4)

with

w′ = u′
∂h

∂x
at z = h(x). (5.5)

The terrain shape is a plateau with steep sides, with length scales modeled

roughly on the equatorial Andes. The shape of the topography is described by the

smooth 2D plateau profile

h(x′) =































h0

16

[

1 + cos
(

πx′

4Ls

)]4

, for Lp ≤ | x′ | ≤ Lp + 4Ls;

h0, for | x′ | < Lp;

0, otherwise,

(5.6)

where Lp corresponds to the half width of the flat part of the plateau, and Ls is

roughly half width of the slope of the plateau. Here we set the two slopes to be

symmetric. The variable x′ in (5.6) is defined to be the distance as measured from

the center of the plateau. If the coastline is located at x = 0 and the distance from

the coastline to the point where h(x) first reaches its maximum height is Lc, then

x′ = x− (Lc + Lp/2). (5.7)

The diabatic oscillating heat source Q is defined by [c.f. (4.5)]

Q(x, z, t) =
1

π

(π

2
+ tan−1 x

L

)

exp(−z − h

H
) cos(ωt). (5.8)
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Different from the heating profile used in chapter IV, this definition of the heat source

includes the elevated heating gradient associated with the topography. As mentioned

above, the center of the coastal zone is taken to be x = 0.

The disturbance is scaled using the diurnal scaling factors described in chapter

IV, section B1. As before, the nondimensional control parameters then include the

nondimensional background wind speed U = U/NH, the nondimensional half width

of the coastal zone L = ωL/NH and the nondimensional dynamical aspect ratio δ =

ω/N . The use of a compressible pressure equation (5.4) introduces a Mach number

Ma = NH/cs. When terrain is added, four additional parameters are introduced: the

nondimensional terrain height H = h0/H, the nondimensional half width of the slope

Ls = ωLs/NH, the nondimensional half with of the plateau Lp = ωLp/NH, and the

nondimensional distance between the coastline and the topography Lc = ωLc/NH.

To simplify the parameter space, only the parameters U and H will be varied in our

calculations. The remaining parameters are held fixed with L = 0.0909, δ = 0.0073,

Ma = 0.0267, Ls = 0.1364, Lp = 1.364, Lc = 2.182. Dimensional values for the

parameters are given below.

The eight parameters given above completely describe the disturbance parameter

space. However, for cases with background wind it is also useful to indicate the

mountain-wave parameters as defined in chapter II. Thus for U 6= 0 we give the

mountain height in terms of both h0/H and Nh0/U .

2. Computational method

With the terrain added, the linear problem can no longer be addressed analytically

because of the non-constant coefficients in (5.1)-(5.5). To overcome this problem, we

use a linearized numerical model to compute the solutions.

The computation methodology involves two steps. First, using a nonlinear model,
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the mountain wave problem is computed without the heat source until a steady state

mountain wave is achieved. A second simulation is then computed in which the model

is linearized about the steady state mountain wave from the first model run. The

oscillating heat source is added and the linear model is run until a steady oscillation

is achieved. In this way, we can separate the disturbance due to the specified heating

from the background mountain wave.

The linear simulations are calculated using a linearized version of the nonhydro-

static, compressible Boussinesq model described in chapter II. The lateral boundary

condition is realized through the damping layer. Both a damping layer and the radi-

ation condition are applied at the upper boundary. Terrain is included by use of the

terrain-following vertical coordinate (2.13), which in the linearized problem implies

the boundary condtion (5.5).

The 2D calculations are computed in a domain with horizontal extent 300L and

depth 18.75H. The damping layers are imposed for the outer 48L of the domain in

x and the upper 8.75H in z. The horizontal grid spacing is 4x = 0.2L. The vertical

grid spacing is 4z = 0.05H with vertical stretching factor of 1.005. Such small

vertical grid spacing is needed to fully resolve the disturbance raypaths for U = 0

and to resolve the flow near the ground for U 6= 0. In dimensional terms, L = 10km,

H = 800m, N = 0.01 s−1, 4x = 2km and 4z = 40m. The terrain parameters are

given by Ls = 15km, Lp = 150km and Lc = 90km.

3. Verification

The linear model was verified by comparison to the theoretical solution described in

chapter IV. Figures 26 and 27 show the vertical velocity and the horizontal velocity

obtained from the analytical calculation and from the linear numerical model at cycle

time ωt = π/2. It is clear that the model simulation matches the theory calcuations
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Fig. 26. The comparison of the horizontal velocity with the different background wind

U at π/2 day between the analytical calculation results and the linear numer-

ical results.
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Fig. 27. The comparison of the vertical velocity with the different background wind U
at π/2 day between the analytical calculation results and the linear numerical

results.
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very well. This reliable linear model can be used as a replacement for linear theory

when more complicated studies of the sea breeze are investigated.

C. Linear Wave Response to Small Topography

The linear behavior of the wave response to small topography is explored in this

section. Our main interest in this part is to explore the relative importance of the

three effects of topography mentioned in section A.

1. Resting background state

For U = 0 only two of the mountain effects are non-zero: the elevated heating gradi-

ents and the disturbance sea breeze flow past the topography slopes. Figure 28 shows

the linear wave response for the case U = 0 and for topgraphy heights H = 0.0625,

H = 0.125 and H = 0.625. At small topography height the disturbances are domi-

nated by the sea breeze solution discribed by R83, but there are also small additional

disturbances excited over the plateau slopes (Fig. 28a). The amplitude of this ad-

ditional disturbance increases with topography height (Fig. 28b). When topography

height is H = 0.625, the additional disturbance becomes the same order as the sea

breeze wave disturbanc (Fig. 28c).

Figure 29 shows the solution for the same mountain heights but with no coastline,

that is with the heat source (5.8) replaced by

Q(x, z, t) = exp(−z − h

H
) cos(ωt). (5.9)

With no coastline the sea breeze disturbance disappears and the only wave source

is then the elevated heating gradients. Figs. 29a and b show that the elevated

heating gradients produce disturbances over both slopes, with the amplitude of the
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Fig. 28. Vertical velocity response to the diurnal heating at t = π/2. Terrain height

h0is (a) 0.0625, (b) 0.125 and (c) 0.625.
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Fig. 29. Vertical velocity response to the diurnal heating at t = π/2. Coastline is

not included. Vertical velocity response to the diurnal heating at t = π/2.

Terrain height h0is (a) 0.0625, (b) 0.125 and (c) 0.625.
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disturbance similar to that in Fig. 28 except for Fig. 29c (in which the new branch

in Fig. 29c is apparently due to the wave reflection). This suggests that the elevated

heating source is the dominant terrain effect for U = 0. As in Fig 28 the amplitude

of the response increases with the terrain height.

Note that the maximum w disturbance occurs where the disturbance raypaths

intersect over the plateau. We revisit this point in section D.

2. Mountain-wave background state

Figure 30 shows the linear disturbance produced by the heat source for the case

U = 0.625. Figure 30a shows the sea breeze disturbance without topography. Figure

30b shows the case with H = 0.0625 (or Nh0/U = 0.1) and indicates that the effect

of the terrain is to introduce wave disturbances over the two slopes of the plateau.

Fig. 30c shows these disturbances with no coastline. As before, this indicates the

wave generation by the elevated heating gradients in the absence of the sea breeze.

Comparing Fig. 30b and c shows that the disturbance excited by the elevated heating

is relatively small in this case. The disturbance produced by the other two topography

effects will be diagnosed in the following section.

Calculations with larger mountain heights suggest that the disturbance becomes

unstable once the mountain height reaches some critical value. The form of the

instability is similar to the instability seen in the mountain-wave problem described

by [104]. This suggests the instablity is likely to be caused by the triad interaction.

3. Diagnostic calculations

Figure 30 shows that the main effect of the terrain in the calculations with the back-

ground wind is to introduce additional wave disturbances over the topographic slopes.

The present section explores the forcing mechanism that produces these slope distur-
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Fig. 30. Vertical velocity with background wind U = 0.625 at t = π/2. Vertical

velocity [c.i. = 0.08] in case with (a) no terrain; (b) h0 = 0.0625 and coastline

included; (c) h0 = 0.0625 and coastline excluded.

bances.

As pointed out previously, in the basic equations (5.1)-(5.8) there are three mod-

ifications due to the imposed topography: the elevated heat gradients (included in the

heating profile Q), the disturbance flow over the slopes (included in the lower bound-

ary condition) and the interaction with the background mountain wave (included in

the advection terms). In general, these three effects are interconnected– for example,

the flow produced by the elevated heating will in principle produce a disturbance

flow over the sloped boundary. However, as shown below, for small terrain heights

the three effects can be cleanly separated.

To begin, assume small terrain height h and expand the disturbance fields in

powers of h as

u′ = u(0) + u(1) + ..., w′ = w(0) + w(1) + ...,

b′ = b(0) + b(1) + ..., P ′ = P (0) + P (1) + ...,

Q = Q(0) +Q(1) + ...

where u(0) ∼ O(0), u(1) ∼ O(h), u(2) ∼ O(h2), etc. Here the forcing terms are derived



85

from the Taylor series expansion as

Q(0) =
Q0

π

(π

2
+ tan−1 x

L

)

exp
(

− z

H

)

cos(ωt), (5.10)

and

Q(1) =
Q0h

πH

(π

2
+ tan−1 x

L

)

exp(−z/H) cos(ωt). (5.11)

The background mountain wave also depends on h and is expanded as

u0 = u
(1)
0 + u

(2)
0 + ..., w0 = w

(1)
0 + w

(2)
0 + ..., b0 = b

(1)
0 + b

(2)
0 + ...

where it should be noted that the zero-order terms for the mountain wave are zero.

In the present context these background terms are assumed to be known.

Then we substitute the above expressions into the basic equations. For small h,

the zero-order system is

∂u(0)

∂t
+ U

∂u(0)

∂x
+
∂P (0)

∂x
= 0, (5.12)

∂P (0)

∂z
− b(0) = 0, (5.13)

∂b(0)

∂t
+ U

∂b(0)

∂x
+N2w(0) = Q(0), (5.14)

∂u(0)

∂x
+
∂w(0)

∂z
= 0 (5.15)

with

w(0)(z = 0) = 0. (5.16)

The solution to (5.12)-(5.16) are the linear sea-breeze solutions described in chapter



86

IV. The first order system (in h) is then

∂u(1)

∂t
+ U

∂u(1)

∂x
+
∂P (1)

∂x
= −u(1)

0

∂u(0)

∂x
− w

(1)
0

∂u(0)

∂z
− u(0)∂u

(1)
0

∂x
− w(0)∂u

(1)
0

∂z
,

(5.17)

∂

∂x
P (1) − b(1) = 0, (5.18)

∂b(1)

∂t
+ U

∂b(1)

∂x
+N2w(1) = −u(1)

0

∂b(0)

∂x
− w

(1)
0

∂b(0)

∂z
− u(0)∂b

(1)
0

∂x
− w(0)∂b

(1)
0

∂z
+Q(1),

(5.19)

∂u(1)

∂x
+
∂w(1)

∂z
= 0 (5.20)

with

w(1) = u(0)∂h

∂x
at z = 0 (5.21)

For small terrain height the system (5.17)-(5.21) describes the leading-order effects

of the terrain.

The system (5.17)-(5.21) shows that at leading order the three terrain effects

mentioned in section A can be cleanly seperated: (i) the elevated heating gradients

are described by Q(1) term in (5.19); (ii) the sea-breeze flow past the terrain slopes

is described by (5.21); and (iii) the interaction between the sea breeze and the back-

ground mountain wave is described by the advection terms on the right in (5.17) and

(5.19). Since the system is linear, the response to these three forcing terms can be

computed independently.

Solutions to the first-order system (5.17)-(5.21) are computed using a modified

version of the linear model described previously. The model assumes a flat lower

boundary but allows w to be specified at the boundary according to (5.21). For

simplicity of coding, the calculations were implemented using a hydrostatic version

of the model.
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Fig. 31. Three effects of topography for cases with background wind U = .625 and

H = 0.0031 at t = π/2. Vertical velocity [c.i. = 5e − 5m/s] due to (a) the

disturbance flow over slope (b) the elevated temperature gradient, (c) the

wave-wave interaction between sea breeze and mountain wave, (d) the total

disturbuance.
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Figure 31 displays the three separate effects of topography at leading order. The

effects of (i) the sea breeze flow over the slopes (Fig. 31a) and (iii) the interaction

between sea-breeze and mountain wave (Fig. 31c) are similar in size. The effect of

the elevated heating gradient is found to be negligible in this case.

D. Nonlinear Phenomena

The calculations described above give some insight into the effects of terrain on the

sea breeze as considered in the linear context. However, the real problem is strongly

nonlinear. In this section we consider several examples of the nonlinear behavior

of the sea breeze wave response by computing numerical simulations with varying

interior heating amplitude. Note that the results in this section are work in progress

and thus should probably be considered preliminary.

1. Basic physics and computational methods for nonlinear calculations

The simulations in this section are computed using the nonlinear compressible Boussi-

nesq model described in chapter II. For the present simulations the model is modified

in two ways: (i) interior heating source described in (5.8) is added to the domain;

and (ii) instead of bell-shaped topography, the plateau described in (5.6) is added to

the lower boundary. The positions and parameters for the coastline and terrain are

the same as in section B1.

The scalings for the nonlinear problem are the same for the linear problem in

section B1. The use of the nonlinearity model introduces two additional control

parameters: a Reynolds number for nonlinear mountain wave Re = U 3/κN2L and

the nondimensional heating amplitude ε = Q0/N
2ωH. In our nonlinear calculations

there are thus three parameters that will be varied: U , H and ε. The rest of the
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parameters are held fixed as in last section and the Reynolds number is set to be

Re = 125.

As in the previous work, we briefly check the reliablity of the nonlinear model

by comparing to the linear problem when the heating amplitude is very small. The

comparison between Figs. 32, 26 and 27 shows that the nonlinear model reproduces

the linear results when the small heating is applied.

xω/NH

0 

4

8

z/
H

   4  0 -4
xω/NH

   4  0 -4

Fig. 32. (a) Horizontal and (b) vertical velocity without background wind at cycle

time ωt = π/2 for ε = 0.001 and U = 0 and H = 0.

2. Resting background state

Figure 33 shows the transition of the system from linear to nonlinear for U = 0

and varying mountain height cases. The first column revisits the results in [105].

As expected, for small ε the solutions are similar to the linear theory calculations.

However, with increasing heating amplitude the nonlinear factor introduces fronts

to both left and right sea breeze branches. For the leftward propagating front, the

intensity and propagation speed increase strongly with heating amplitude, with only a

weaker secondary dependence on the terrain height. At the larger terrain heights, the
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rightward propagating front becomes distorted. Note that the raypath intersection

over the plateau seen in the linear solutions is found to trigger convetive overturning

when the heating amplitude is large enough.

Figure 34 shows the time evolution of the system with ε = 1.5 and no terrain.

For the resting background case, the fronts form near the ends of the heating and

cooling cycles and propogate onshore and offshore.

3. Flows with background wind

For the no-terrain cases, adding the background wind U = 0.625 leads to significant

differences from U = 0 solution due to the Doppler-shifting of the wave modes. As

shown in the first column in figure 35, the leftward propagating branch of the linear

sea breeze remains essentially unchanged with heating amplitude when the terrain is

flat. However, when terrain is added an upstream propagating front is formed and the

sea breeze pattern is distorted. As with the U = 0 case, the intensity and propagation

speed of the front depends largely on the heating amplitude. The time evolution of

the system both with and without terrain is illustrated in Figs. 36 and 37.

The intensity and position of the front versus the heating amplitude at time ωt =

π/2 is illustrated for both U = 0 and U = 0.625 in figure 38. For ε > 0.25, the distance

of the front from the coastline and the intensity of the front both increase roughly

linearly with the heating amplitude. Interestingly, the addition of the background

wind leads to essentially no change in the propagation speed of the front, while the

intensity of the front with the background wind is stronger.
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Fig. 33. Vertical velocity [c.i. = 0.12] for the case with the background wind U = 0, dif-

ferent heating amplitude and topography height at time ωt = π/2. Different

heating amplitude ε are (a),(b),(c),(d) 0.01; (e),(f),(g),(h) 0.25; (i),(j),(k),(l)

0.5; (m),(n),(o),(p) 1; (q),(r), (s),(t) 1.5. The topography heights from left to

right are 0, 0.0625, 0.125 and 0.25.
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Fig. 34. Vertical velocity [c.i. = 0.12] for ε = 1.5, H = 0 and U = 0 case at time (a)

4.0day; (b) 4.25day; (c) 4.5day; (d) 4.75day.

E. Summary

The effects of topography on the sea breeze were investigated from the linear and

nonlinear perspectives by using a numerical model.

In the linear problem, adding topography introduces new wave disturbances over

the slopes of the plateau. With no background wind this disturbance has a spatial

structure similar to the sea breeze response. The amplitude of the disturbance in-

creases with terrain height, with the disturbance amplitude as large as the sea breeze

for the case H = 0.625. Calculations with no coastline suggest that the disturbance

is produced largely by the elevated heating gradients along the topography slopes.
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Fig. 35. Vertical velocity [c.i. = 0.12] for the case with background wind U = 0.625,

different heating amplitude and topography height at time ωt = π/2.

Different heating amplitude ε are (a),(b),(c),(d) 0.01; (e),(f),(g),(h) 0.25;

(i),(j),(k),(l) 0.5; (m),(n),(o),(p) 1; (q),(r), (s),(t) 1.5. The topography heights

from left to right are 0, 0.0625, 0.125 and 0.25.
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Fig. 36. Vertical velocity for ε = 1.5 and U = 0.625 case at time (a) 4.0day; (b)

4.25day; (c) 4.5day; (d) 4.75day.
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Fig. 37. Vertical velocity for ε = 1.5, U = 0.625 and H = 0.625 at time (a) 4.0day; (b)

4.25day; (c) 4.5day; (d) 4.75day.



96

−5

−4

−3

−2

−1

0

−5

−4

−3

−2

−1

0

0 0.5 1 1.5
0

1

2

3

4

5
x 10

−6

ε

d
b/d

xx
ω
/N

H
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t = π/2 for the case U = 0.625 and position (triangle-dotted line) and intensity

(hexagram-dashdot line) of the front at time t = π/2 for the case U = 0

When background wind is added to the linear problem, the disturbance produced

by the terrain is located directly above the topography slopes. Diagnostic calculations

show that for small terrain heights the disturbance is mainly due to the other two

terrain effects mentioned in section A, i.e., the flow of the sea breeze over the terrain

slope and the interaction between the sea breeze and the background mountain wave.

Different from the hypothesis of [42], the linear wave generation by the elevated

heating gradient in this problem was found to be negligible

Several nonlinear experiments were considered to provide some preliminary in-

sight into the nonlinear phenomena. In the nonlinear results, fronts appear with

increasing heating amplitude ε. In most cases, the propagation speed and intensity

of the fronts are largely determined by ε and not the terrain height. However, for the

case with U = 0.625 the leftward propagating front was found only when the terrain

height was sufficiently large. In the case with U = 0, the wave beam intersection
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over the top of the plateau in the linear simulations is found to trigger convective

overturning in the nonlinear results.
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CHAPTER VI

SUMMARY AND DISCUSSION

A. Discussion for Wave Breaking over Terrain

The wave-turbulence interactions in a breaking mountain wave were investigated using

an ensemble of 40 high-resolution wave-breaking calculations for 3D flow past a 2D

ridge. The TKE budget, turbulent fluxes, PV fluxes and the dependence of the

turbulent fluxes on grid spacing in the breaking mountain wave were all explored. A

detailed summary of the results can be found in chapter II, section G.

It is worth pointing out that our conclusions for this study have a number of

limitations First, as discussed in [9] and [106], the flow past the 2D obstacle misses

some important dynamical phenomena found in the 3D topography case. Second, our

narrow domain width limits the turbulent eddy spectrum in our calculations, which

could potentially affect our turbulent mixing rates. Finally, the assumption of a free-

slip surface oversimplifies the lower boundary condition. Adding a frictional surface

layer would change the acceleration of the shooting flow and the shear production of

TKE, as well as the associated mean-flow dissipation.

Future studies could address any of the topics in the previous paragraph. Perhaps

the most important topic would be addressing the flow past 3D topography.

B. Discussion for Coastal Wave Generation

The effect of background wind and topography on the mesoscale wave response asso-

ciated with the sea breeze was explored using linear theory calculations and idealized

numerical modeling. The sea breeze dependence on background wind and coastal

width was studied in the linear context using Fourier transform solutions. The re-
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sults were then extended to include both terrain and nonlinearity using linear and

nonlinear numerical model calculations. Summaries of the results can be found in

chapter IV, section F and chapter V, section E.

Our sea breeze study is based on simplified and idealized models, which leads

to certain limitations. First, our specification of an interior heat source is an over-

simplification of the effects of boundary layer eddies. A more realistic study would

consider fluxes of heat across the lower boundary. The heat source in our study is also

strictly diurnal, whereas the real world features higher frequency components as well.

Second, our study is limited to the non-rotating (or equatorial) case. The extension

to higher latitudes would require the addition of the Coriolis force. Finally, our study

completely neglects the effects of 3D coastlines.

The preliminary results for the nonlinear phenomena in chapter V, section D will

be further diagnosed. Future work could then address any of the topics mentioned in

the previous paragraph. Perhaps the most interesting work would be to consider the

Coriolis effect on the sea breeze in a background wind.
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