732 research outputs found

    A Search for Extraterrestrial Intelligence (SETI) toward the Galactic Anticenter with the Murchison Widefield Array

    Get PDF
    Following the results of the first systematic modern low-frequency search for extraterrestrial intelligence using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a Galactic Anticenter field. Using the MWA in the frequency range 99-122 MHz over a three-hour period, a 625 deg 2 field centered on Orion KL (in the general direction of the Galactic Anticenter) was observed with a frequency resolution of 10 kHz. Within this field, 22 exoplanets are known. At the positions of these exoplanets, we searched for narrowband signals consistent with radio transmissions from intelligent civilizations. No such signals were found with a 5ĂÆ’ detection threshold. Our sample is significantly different to the 45 exoplanets previously studied with the MWA toward the Galactic Center, since the Galactic Center sample is dominated by exoplanets detected using microlensing, and hence at much larger distances than the exoplanets toward the Anticenter, found via radial velocity and transit detection methods. Our average effective sensitivity to extraterrestrial transmitter power is therefore much improved for the Anticenter sample. Added to this, our data processing techniques have improved, reducing our observational errors, leading to our best detection limit being reduced by approximately a factor of four compared to our previously published results

    The first resolved imaging of milliarcsecond-scale jets in Circinus X-1

    Get PDF
    We present the first resolved imaging of the milliarcsecond-scale jets in the neutron star X-ray binary Circinus X-1, made using the Australian Long Baseline Array. The angular extent of the resolved jets is ~20 milliarcseconds, corresponding to a physical scale of ~150 au at the assumed distance of 7.8 kpc. The jet position angle is relatively consistent with previous arcsecond-scale imaging with the Australia Telescope Compact Array. The radio emission is symmetric about the peak, and is unresolved along the minor axis, constraining the opening angle to be less than 20 degrees. We observe evidence for outward motion of the components between the two halves of the observation. Constraints on the proper motion of the radio-emitting components suggest that they are only mildly relativistic, although we cannot definitively rule out the presence of the unseen, ultra-relativistic (Lorentz factor >15) flow previously inferred to exist in this system.Comment: Accepted for publication in MNRAS Letters. 6 pages, 4 figure

    Chandra Discovery of a 100 kpc X-ray Jet in PKS 0637--752

    Get PDF
    The quasar PKS 0637-753, the first celestial X-ray target of the Chandra X-ray Observatory, has revealed asymmetric X-ray structure extending from 3 to 12 arcsec west of the quasar, coincident with the inner portion of the jet previously detected in a 4.8 GHz radio image (Tingay et al. 1998). At a redshift of z=0.651, the jet is the largest (~100 kpc) and most luminous (~10^{44.6} ergs/s) of the few so far detected in X-rays. This letter presents a high resolution X-ray image of the jet, from 42 ks of data when PKS 0637-753 was on-axis and ACIS-S was near the optimum focus. For the inner portion of the radio jet, the X-ray morphology closely matches that of new ATCA radio images at 4.8 and 8.6 GHz. Observations of the parsec scale core using the VSOP space VLBI mission show structure aligned with the X-ray jet, placing important constraints on the X-ray source models. HST images show that there are three small knots coincident with the peak radio and X-ray emission. Two of these are resolved, which we use to estimate the sizes of the X-ray and radio knots. The outer portion of the radio jet, and a radio component to the east, show no X-ray emission to a limit of about 100 times lower flux. The X-ray emission is difficult to explain with models that successfully account for extra-nuclear X-ray/radio structures in other active galaxies. We think the most plausible is a synchrotron self-Compton (SSC) model, but this would imply extreme departures from the conventional minimum-energy and/or homogeneity assumptions. We also rule out synchrotron or thermal bremsstrahlung models for the jet X-rays, unless multicomponent or ad hoc geometries are invoked.Comment: 5 Pages, 2 Figures. Submitted to Ap. J. Letter

    Disentangling the circumnuclear environs of Centaurus A: II. On the nature of the broad absorption line

    Full text link
    We report on atomic gas (HI) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our HI observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution HI absorption profiles toward different positions along the 21 cm continuum jet emission in the inner 0."3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, not possible with previous CO single-dish observations. We shed light with these data on the physical properties of the gas in the line of sight, emphasizing the still open debate about the nature of the gas that produces the broad absorption line (~55 km/s). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance ~ 20 mas (or 0.4 pc) further from it. This suggests that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well other molecular lines, such as those of HCO+(1-0), except the broad absorption line that is detected in HCO+(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the AGN seems to be efficient at distances <= 10 pc, which might contribute to the depth of the broad H I and molecular lines.Comment: 17 pages, 9 figures, accepted for publication in Ap

    PKS 1622-253: A Weakly Accreting, Powerful Gamma Ray Source

    Get PDF
    In this Letter, we discuss new deep radio observations of PKS 1622-253 and their implications for the energetics of the central engine that powers this strong high energy gamma-ray source. Combining archival infrared and optical measurements with new millimeter observations, we show that even though the accretion flow in PKS 1622-253 is under-luminous by quasar standards, a powerful super-luminal jet is launched with a higher kinetic luminosity than most EGRET blazars. Only a few percent of the total jet kinetic luminosity is required to power even the most powerful gamma ray flares that are observed. The implication is that a high accretion system is not required to power the strongest high energy gamma ray sources.Comment: To appear in ApJ Letter

    A deep, high resolution survey of the low frequency radio sky

    Full text link
    We report on the first wide-field, very long baseline interferometry (VLBI) survey at 90 cm. The survey area consists of two overlapping 28 deg^2 fields centred on the quasar J0226+3421 and the gravitational lens B0218+357. A total of 618 sources were targeted in these fields, based on identifications from Westerbork Northern Sky Survey (WENSS) data. Of these sources, 272 had flux densities that, if unresolved, would fall above the sensitivity limit of the VLBI observations. A total of 27 sources were detected as far as 2 arcdegrees from the phase centre. The results of the survey suggest that at least 10% of moderately faint (S~100 mJy) sources found at 90 cm contain compact components smaller than ~0.1 to 0.3 arcsec and stronger than 10% of their total flux densities. A ~90 mJy source was detected in the VLBI data that was not seen in the WENSS and NRAO VLA Sky Survey (NVSS) data and may be a transient or highly variable source that has been serendipitously detected. This survey is the first systematic (and non-biased), deep, high-resolution survey of the low-frequency radio sky. It is also the widest field of view VLBI survey with a single pointing to date, exceeding the total survey area of previous higher frequency surveys by two orders of magnitude. These initial results suggest that new low frequency telescopes, such as LOFAR, should detect many compact radio sources and that plans to extend these arrays to baselines of several thousand kilometres are warranted.Comment: Accepted by The Astrophysical Journal. 39 pages, 4 figure

    PKS 1018-42: A Powerful Kinetically Dominated Quasar

    Full text link
    We have identified PKS 1018-42 as a radio galaxy with extraordinarily powerful jets, over twice as powerful as any 3CR source of equal or lesser redshift except for one (3C196). It is perhaps the most intrinsically powerful extragalactic radio source in the, still poorly explored, Southern Hemisphere. PKS 1018-42 belongs to the class of FR II objects that are kinetically dominated, the jet kinetic luminosity, Q∌6.5×1046ergs/sQ \sim 6.5 \times 10^{46}\mathrm{ergs/s} (calculated at 151 MHz), is 3.4 times larger than the total thermal luminosity (IR to X-ray) of the accretion flow, Lbol∌1.9×1046ergs/sL_{bol} \sim 1.9 \times 10^{46}\mathrm{ergs/s}. It is the fourth most kinetically dominated quasar that we could verify from existing radio data. From a review of the literature, we find that kinetically dominated sources such as PKS 1018-42 are rare, and list the 5 most kinetically dominated sources found from our review. Our results for PKS 1018-42 are based on new observations from the Australia Telescope Compact Array.Comment: To appear in ApJ Letter

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
    • 

    corecore