774 research outputs found
A Search for Extraterrestrial Intelligence (SETI) toward the Galactic Anticenter with the Murchison Widefield Array
Following the results of the first systematic modern low-frequency search for extraterrestrial intelligence using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a Galactic Anticenter field. Using the MWA in the frequency range 99-122 MHz over a three-hour period, a 625 deg 2 field centered on Orion KL (in the general direction of the Galactic Anticenter) was observed with a frequency resolution of 10 kHz. Within this field, 22 exoplanets are known. At the positions of these exoplanets, we searched for narrowband signals consistent with radio transmissions from intelligent civilizations. No such signals were found with a 5ĂÆ detection threshold. Our sample is significantly different to the 45 exoplanets previously studied with the MWA toward the Galactic Center, since the Galactic Center sample is dominated by exoplanets detected using microlensing, and hence at much larger distances than the exoplanets toward the Anticenter, found via radial velocity and transit detection methods. Our average effective sensitivity to extraterrestrial transmitter power is therefore much improved for the Anticenter sample. Added to this, our data processing techniques have improved, reducing our observational errors, leading to our best detection limit being reduced by approximately a factor of four compared to our previously published results
The first resolved imaging of milliarcsecond-scale jets in Circinus X-1
We present the first resolved imaging of the milliarcsecond-scale jets in the
neutron star X-ray binary Circinus X-1, made using the Australian Long Baseline
Array. The angular extent of the resolved jets is ~20 milliarcseconds,
corresponding to a physical scale of ~150 au at the assumed distance of 7.8
kpc. The jet position angle is relatively consistent with previous
arcsecond-scale imaging with the Australia Telescope Compact Array. The radio
emission is symmetric about the peak, and is unresolved along the minor axis,
constraining the opening angle to be less than 20 degrees. We observe evidence
for outward motion of the components between the two halves of the observation.
Constraints on the proper motion of the radio-emitting components suggest that
they are only mildly relativistic, although we cannot definitively rule out the
presence of the unseen, ultra-relativistic (Lorentz factor >15) flow previously
inferred to exist in this system.Comment: Accepted for publication in MNRAS Letters. 6 pages, 4 figure
Chandra Discovery of a 100 kpc X-ray Jet in PKS 0637--752
The quasar PKS 0637-753, the first celestial X-ray target of the Chandra
X-ray Observatory, has revealed asymmetric X-ray structure extending from 3 to
12 arcsec west of the quasar, coincident with the inner portion of the jet
previously detected in a 4.8 GHz radio image (Tingay et al. 1998). At a
redshift of z=0.651, the jet is the largest (~100 kpc) and most luminous
(~10^{44.6} ergs/s) of the few so far detected in X-rays. This letter presents
a high resolution X-ray image of the jet, from 42 ks of data when PKS 0637-753
was on-axis and ACIS-S was near the optimum focus. For the inner portion of the
radio jet, the X-ray morphology closely matches that of new ATCA radio images
at 4.8 and 8.6 GHz. Observations of the parsec scale core using the VSOP space
VLBI mission show structure aligned with the X-ray jet, placing important
constraints on the X-ray source models. HST images show that there are three
small knots coincident with the peak radio and X-ray emission. Two of these are
resolved, which we use to estimate the sizes of the X-ray and radio knots. The
outer portion of the radio jet, and a radio component to the east, show no
X-ray emission to a limit of about 100 times lower flux.
The X-ray emission is difficult to explain with models that successfully
account for extra-nuclear X-ray/radio structures in other active galaxies. We
think the most plausible is a synchrotron self-Compton (SSC) model, but this
would imply extreme departures from the conventional minimum-energy and/or
homogeneity assumptions. We also rule out synchrotron or thermal bremsstrahlung
models for the jet X-rays, unless multicomponent or ad hoc geometries are
invoked.Comment: 5 Pages, 2 Figures. Submitted to Ap. J. Letter
Disentangling the circumnuclear environs of Centaurus A: II. On the nature of the broad absorption line
We report on atomic gas (HI) and molecular gas (as traced by CO(2-1))
redshifted absorption features toward the nuclear regions of the closest
powerful radio galaxy, Centaurus A (NGC 5128). Our HI observations using the
Very Long Baseline Array allow us to discern with unprecedented sub-parsec
resolution HI absorption profiles toward different positions along the 21 cm
continuum jet emission in the inner 0."3 (or 5.4 pc). In addition, our CO(2-1)
data obtained with the Submillimeter Array probe the bulk of the absorbing
molecular gas with little contamination by emission, not possible with previous
CO single-dish observations. We shed light with these data on the physical
properties of the gas in the line of sight, emphasizing the still open debate
about the nature of the gas that produces the broad absorption line (~55 km/s).
First, the broad H I line is more prominent toward the central and brightest 21
cm continuum component than toward a region along the jet at a distance ~ 20
mas (or 0.4 pc) further from it. This suggests that the broad absorption line
arises from gas located close to the nucleus, rather than from diffuse and more
distant gas. Second, the different velocity components detected in the CO(2-1)
absorption spectrum match well other molecular lines, such as those of
HCO+(1-0), except the broad absorption line that is detected in HCO+(1-0) (and
most likely related to that of the H I). Dissociation of molecular hydrogen due
to the AGN seems to be efficient at distances <= 10 pc, which might contribute
to the depth of the broad H I and molecular lines.Comment: 17 pages, 9 figures, accepted for publication in Ap
PKS 1622-253: A Weakly Accreting, Powerful Gamma Ray Source
In this Letter, we discuss new deep radio observations of PKS 1622-253 and
their implications for the energetics of the central engine that powers this
strong high energy gamma-ray source. Combining archival infrared and optical
measurements with new millimeter observations, we show that even though the
accretion flow in PKS 1622-253 is under-luminous by quasar standards, a
powerful super-luminal jet is launched with a higher kinetic luminosity than
most EGRET blazars. Only a few percent of the total jet kinetic luminosity is
required to power even the most powerful gamma ray flares that are observed.
The implication is that a high accretion system is not required to power the
strongest high energy gamma ray sources.Comment: To appear in ApJ Letter
A deep, high resolution survey of the low frequency radio sky
We report on the first wide-field, very long baseline interferometry (VLBI)
survey at 90 cm. The survey area consists of two overlapping 28 deg^2 fields
centred on the quasar J0226+3421 and the gravitational lens B0218+357. A total
of 618 sources were targeted in these fields, based on identifications from
Westerbork Northern Sky Survey (WENSS) data. Of these sources, 272 had flux
densities that, if unresolved, would fall above the sensitivity limit of the
VLBI observations. A total of 27 sources were detected as far as 2 arcdegrees
from the phase centre. The results of the survey suggest that at least 10% of
moderately faint (S~100 mJy) sources found at 90 cm contain compact components
smaller than ~0.1 to 0.3 arcsec and stronger than 10% of their total flux
densities. A ~90 mJy source was detected in the VLBI data that was not seen in
the WENSS and NRAO VLA Sky Survey (NVSS) data and may be a transient or highly
variable source that has been serendipitously detected. This survey is the
first systematic (and non-biased), deep, high-resolution survey of the
low-frequency radio sky. It is also the widest field of view VLBI survey with a
single pointing to date, exceeding the total survey area of previous higher
frequency surveys by two orders of magnitude. These initial results suggest
that new low frequency telescopes, such as LOFAR, should detect many compact
radio sources and that plans to extend these arrays to baselines of several
thousand kilometres are warranted.Comment: Accepted by The Astrophysical Journal. 39 pages, 4 figure
PKS 1018-42: A Powerful Kinetically Dominated Quasar
We have identified PKS 1018-42 as a radio galaxy with extraordinarily
powerful jets, over twice as powerful as any 3CR source of equal or lesser
redshift except for one (3C196). It is perhaps the most intrinsically powerful
extragalactic radio source in the, still poorly explored, Southern Hemisphere.
PKS 1018-42 belongs to the class of FR II objects that are kinetically
dominated, the jet kinetic luminosity, (calculated at 151 MHz), is 3.4 times larger than the
total thermal luminosity (IR to X-ray) of the accretion flow, . It is the fourth most kinetically dominated
quasar that we could verify from existing radio data. From a review of the
literature, we find that kinetically dominated sources such as PKS 1018-42 are
rare, and list the 5 most kinetically dominated sources found from our review.
Our results for PKS 1018-42 are based on new observations from the Australia
Telescope Compact Array.Comment: To appear in ApJ Letter
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout
As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
- âŠ