236 research outputs found

    Oscillatory behavior in the CO-oxidation over bulk ruthenium dioxide – the effect of the CO/O<sub>2</sub> ratio

    Get PDF
    CO oxidation over polycrystalline ruthenium dioxide was monitored in an in-situ XRD setup. The evolution of the bulk state of the catalyst was followed by in-situ XRD during reaction, while the surface morphology and chemical state before and after reaction were investigated by HRSEM and EDX. The commercial RuO2 powder was calcined prior reaction to ensure the formation of completely oxidized RuO2. This pre-calcined RuO2 is initially inactive in CO oxidation regardless of the CO/O2 feed ratio and requires an induction period, the length of which strongly depends whether the catalyst is diluted with boron nitride or not. After this induction period oscillations in the CO2 yield occur under O2-rich conditions only. These oscillations exhibit two time constants for the diluted catalyst, while the low frequency oscillations were not observed in the case of undiluted RuO2. Furthermore, the state of the catalyst after activation in O2-rich feed conditions differs dramatically from the state after activation in CO-rich feed conditions. Firstly, the catalyst activated in an O2-rich atmosphere remains inactive under CO-rich conditions in contrast to the catalyst activated in CO-rich conditions which is afterwards active under all feed ratios examined. Secondly, the surface morphology of the catalyst is quite different. While the apical surfaces of the RuO2 crystals become roughened upon activation in the CO-rich feed, they become facetted under O2 rich activation conditions. Therefore, we conclude that at least two different active surface states on the bulk RuO2 catalyst exist

    Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population

    Get PDF
    Selecting the appropriate formulation and solubility-enabling technology for poorly water soluble drugs is an essential element in the development of formulations for paediatric patients. Different methodologies and structured strategies are available to select a suitable approach and guide formulation scientists for development of adult formulations. However, there is paucity of available literature for selection of technology and overcoming the challenges in paediatric formulation development. The need for flexible dosing, and the limited knowledge of the safety of many formulation excipients in paediatric subjects, impose significant constraints and in some instances require adaptation of the approaches taken to formulating these drugs for the adult population. Selection of the best drug delivery system for paediatrics requires an efficient, systematic approach that considers a drug's physical and chemical properties and the targeted patient population's requirements. This review is a step towards development of a strategy for the design of solubility enhancing paediatric formulations of highly insoluble drugs. The aim of this review is to provide an overview of different approaches and strategies to consider in order to assist development of paediatric formulation for poorly water-soluble drugs with the provision of examples of some marketed products. In addition, it provides recommendations to overcome the range of challenges posed by these strategies and adaptations of the adult approach/product presentation required to enable paediatric drug development and administration

    Analysis of the structure and chemical properties of some commercial carbon nanostructures

    No full text
    For many years the scientific community has believed in a promising future for carbon nanotubes for various applications in such diverse fields as polymer reinforcement, adsorption, catalysis, electronics and medicine. Industrial production of carbon nanotubes and -fibers and the subsequent availability and decrease of price, have rendered this vision feasible. In the last years, several carbon nanomaterial products have been marketed by major chemical companies. In this work, we present an extensive characterization of a representative set of commercially available carbon nanomaterials. Special focus has been put on their quality, i.e. presence of metal or carbonaceous impurities but also homogeneity and structural integrity. The observations are of importance for subsequent use in catalysis where the presence of impurities or defects in the nanostructure can dramatically modify the activity of the catalytic material

    A possible billion-year-old holozoan with differentiated multicellularity.

    Get PDF
    Sediments of the Torridonian sequence of the Northwest Scottish Highlands contain a wide array of microfossils, documenting life in a non-marine setting a billion years ago (1 Ga).1, 2, 3, 4 Phosphate nodules from the Diabaig Formation at Loch Torridon preserve microorganisms with cellular-level fidelity,5,6 allowing for partial reconstruction of the developmental stages of a new organism, Bicellum brasieri gen. et sp. nov. The mature form of Bicellum consists of a solid, spherical ball of tightly packed cells (a stereoblast) of isodiametric cells enclosed in a monolayer of elongated, sausage-shaped cells. However, two populations of naked stereoblasts show mixed cell shapes, which we infer to indicate incipient development of elongated cells that were migrating to the periphery of the cell mass. These simple morphogenetic movements could be explained by differential cell-cell adhesion.7,8 In fact, the basic morphology of Bicellum is topologically similar to that of experimentally produced cell masses that were shown to spontaneously segregate into two distinct domains based on differential cadherin-based cell adhesion.9 The lack of rigid cell walls in the stereoblast renders an algal affinity for Bicellum unlikely: its overall morphology is more consistent with a holozoan origin. Unicellular holozoans are known today to form multicellular stages within complex life cycles,10, 11, 12, 13 so the occurrence of such simple levels of transient multicellularity seen here is consistent with a holozoan affinity. Regardless of precise phylogenetic placement, these fossils demonstrate simple cell differentiation and morphogenic processes that are similar to those seen in some metazoans today

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Free Will & Empirical Arguments for Epiphenomenalism

    Get PDF
    While philosophers have worried about mental causation for centuries, worries about the causal relevance of conscious phenomena are also increasingly featuring in neuroscientific literature. Neuroscientists have regarded the threat of epiphenomenalism as interesting primarily because they have supposed that it entails free will scepticism. However, the steps that get us from a premise about the causal irrelevance of conscious phenomena to a conclusion about free will are not entirely clear. In fact, if we examine popular philosophical accounts of free will, we find, for the most part, nothing to suggest that free will is inconsistent with the presence of unconscious neural precursors to choices. It is only if we adopt highly non-naturalistic assumptions about the mind (e.g. if we embrace Cartesian dualism and locate free choice in the non-physical realm) that it seems plausible to suppose that the neuroscientific data generates a threat to free will

    Evaluation of variants in the selectin genes in age-related macular degeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related macular degeneration (AMD) is a common disease of the elderly that leads to loss of the central visual field due to atrophic or neovascular events. Evidence from human eyes and animal models suggests an important role for macrophages and endothelial cell activation in the pathogenesis of AMD. We sought to determine whether common ancestral variants in genes encoding the selectin family of proteins are associated with AMD.</p> <p>Methods</p> <p>Expression of E-selectin, L-selectin and P-selectin was examined in choroid and retina by quantitative PCR and immunofluorescence. Samples from patients with AMD (n = 341) and controls (n = 400) were genotyped at a total of 34 SNPs in the <it>SELE</it>, <it>SELL </it>and <it>SELP </it>genes. Allele and genotype frequencies at these SNPs were compared between AMD patients and controls as well as between subtypes of AMD (dry, geographic atrophy, and wet) and controls.</p> <p>Results</p> <p>High expression of all three selectin genes was observed in the choroid as compared to the retina. Some selectin labeling of retinal microglia, drusen cores and the choroidal vasculature was observed. In the genetic screen of AMD versus controls, no positive associations were observed for <it>SELE </it>or <it>SELL</it>. One SNP in <it>SELP </it>(rs3917751) produced p-values < 0.05 (uncorrected for multiple measures). In the subtype analyses, 6 SNPs (one in <it>SELE</it>, two in <it>SELL</it>, and three in <it>SELP</it>) produced p-values < 0.05. However, when adjusted for multiple measures with a Bonferroni correction, only one SNP in <it>SELP </it>(rs3917751) produced a statistically significant p-value (p = 0.0029).</p> <p>Conclusions</p> <p>This genetic screen did not detect any SNPs that were highly associated with AMD affection status overall. However, subtype analysis showed that a single SNP located within an intron of <it>SELP </it>(rs3917751) is statistically associated with dry AMD in our cohort. Future studies with additional cohorts and functional assays will clarify the biological significance of this discovery. Based on our findings, it is unlikely that common ancestral variants in the other selectin genes (<it>SELE </it>and <it>SELL</it>) are risk factors for AMD. Finally, it remains possible that sporadic or rare mutations in <it>SELE</it>, <it>SELL</it>, or <it>SELP </it>have a role in the pathogenesis of AMD.</p
    corecore