743 research outputs found

    Library Services for Distance Learning in Higher Education

    Get PDF
    Distance education has become an important part of college and university academic programs in recent years, potentially impacting millions of students in higher education each year. This study sought to learn what distance learners use to find information for class research, and how much a library's distance education services impact the students' academic success. As universities continue to extend their campuses virtually, their libraries must follow suit to remain relevant to today's highly digital educational environment. Support is needed from the institutions' libraries through dynamic subject guides, online tutorials, etc. to help increase student comprehension of course material. Important issues for libraries and librarians to address include remote access for student research, collaborative planning with teaching faculty, outreach and marketing to increase awareness of library services and resources, library website integration with course management systems, and assessment of library services for distance learners

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Movement of Walleyes in Lakes Erie and St. Clair Inferred from Tag Return and Fisheries Data

    Full text link
    Lake Erie walleyes Sander vitreus support important fisheries and have been managed as one stock, although preliminary tag return and genetic analyses suggest the presence of multiple stocks that migrate among basins within Lake Erie and into other portions of the Great Lakes. We examined temporal and spatial movement and abundance patterns of walleye stocks in the three basins of Lake Erie and in Lake St. Clair with the use of tag return and sport and commercial catchâ perâ unit effort (CPUE) data from 1990 to 2001. Based on summer tag returns, western basin walleyes migrated to the central and eastern basins of Lake Erie and to Lake St. Clair and southern Lake Huron, while fish in the central and eastern basins of Lake Erie and in Lake St. Clair were primarily caught within the basins where they were tagged. Seasonal changes in sport and commercial effort and CPUE in Lake Erie confirmed the walleye movements suggested by tag return data. Walleyes tagged in the western basin but recaptured in the central or eastern basin of Lake Erie were generally larger (or older) than those recaptured in the western basin of Lake Erie or in Lake St. Clair. Within spawning stocks, female walleyes had wider ranges of movement than males and there was considerable variation in movement direction, minimum distance moved (mean distance between tagging sites and recapture locations), and mean length among individual spawning stocks. Summer temperatures in the western basin often exceeded the optimal temperature (20â 23°C) for growth of large walleyes, and the migration of western basin walleyes might represent a sizeâ dependent response to warm summer temperatures. Cooler temperatures and abundant softâ rayed fish probably contributed to an energetically favorable foraging habitat in the central and eastern basins that attracted large walleyes during summer.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141620/1/tafs0539.pd

    Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context

    Get PDF
    Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (∼900–1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially

    Maximally incompressible neutron star matter

    Get PDF
    Relativistic kinetic theory, based on the Grad method of moments as developed by Israel and Stewart, is used to model viscous and thermal dissipation in neutron star matter and determine an upper limit on the maximum mass of neutron stars. In the context of kinetic theory, the equation of state must satisfy a set of constraints in order for the equilibrium states of the fluid to be thermodynamically stable and for perturbations from equilibrium to propagate causally via hyperbolic equations. Application of these constraints to neutron star matter restricts the stiffness of the most incompressible equation of state compatible with causality to be softer than the maximally incompressible equation of state that results from requiring the adiabatic sound speed to not exceed the speed of light. Using three equations of state based on experimental nucleon-nucleon scattering data and properties of light nuclei up to twice normal nuclear energy density, and the kinetic theory maximally incompressible equation of state at higher density, an upper limit on the maximum mass of neutron stars averaging 2.64 solar masses is derived.Comment: 8 pages, 2 figure

    Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways

    Get PDF
    P2RX7, an ionotropic receptor for extracellular ATP, is expressed on immune cells, including macrophages, monocytes and dendritic cells and is up-regulated on non-immune cells following injury. P2RX7 plays a role in many biological processes, including production of pro-inflammatory cytokines such as IL-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knock-out (KO) inbred rat strain and taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identify a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. This article is protected by copyright. All rights reserved
    corecore