133 research outputs found

    Annual and diurnal water vapor cycles at Curiosity from observations and column modeling

    Get PDF
    Local column precipitable water contents (PWC) for more than a martian year from 113 Curiosity ChemCam passive-mode sky scans were used to force a column model with subsurface adsorption. ChemCam volume mixing ratios (vmr) and T, RH and vmr from REMS-H were compared with model results. The REMS-H observations point to decrease of vmr (i.e. depletion of near-surface water vapor) during every evening and night throughout the year. The model's pre-dawn results are quite similar to the REMS-H observations, if adsorption is allowed. The indicated porosity is about 30% and the night depletion ratio about 0.25. If adsorption is not allowed, RH and vmr become excessive during every night at all seasons, leading to ground frost between Ls 82 degrees-146 degrees; frost has not been observed. As brine formation is unlikely along the Curiosity track, adsorption thus appears to be the depleting process. During daytime the ChemCam vmr is in general close to surface values from the Mars Climate Database (MCD) vmr profiles for the Curiosity site when those profiles are scaled to match the ChemCam PWC. Our simulated daytime surface-vmr is in turn close to the ChemCam vmr when moisture is assumed well-mixed to high altitudes, whereas a low moist layer (15 km) leads to overestimates, which are worse during the warm season. Increased TES-like regional PWC also leads to large overestimates of daytime surface-vmr. Hence the crater appears to be drier than the region surrounding Gale and the results support a seasonally varying vertical distribution of moisture with a dry lower atmosphere (by Hadley circulation), as suggested by MCD and other GCM experiments.Peer reviewe

    Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars

    Get PDF
    All MSL data used in this manuscript (REMS and SAM) are freely available on NASA's Planetary Data System (PDS) Geosciences Node, from within 6 months after receipt on Earth (http://pds‐geosciences.wustl.edu/missions/msl/). The mixing ratios developed and presented in this paper are available at a publicly available archive (dataverse.org: doi.org/10.7910/DVN/CVUOWW) as cited within the manuscript. The successful operation of the Curiosity rover and the SAM instrument on Mars is due to the hard work and dedication of hundreds of scientists, engineers, and managers over more than a decade. Essential contributions to the successful operation of SAM on Mars and the acquisition of SAM data were provided by the SAM development, operations, and test bed teams. The authors gratefully thank the SAM and MSL teams that have contributed in numerous ways to obtain the data that enabled this scientific work. We also thank NASA for the support of the development of SAM, SAM data analysis, and the continued support of the Mars Science Laboratory mission. The contribution of F. Lefèvre was supported by the Programme National de Planétologie (PNP). R. Navarro‐Gonzalez acknowledges support from the Universidad Nacional Autónoma de México (PAPIIT IN111619). LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. We thank members of the SAM and larger MSL team for insightful discussions and support. In particular, we thank R. Becker and R. O. Pepin for careful review of data analysis and interpretation. We thank M. D. Smith for discussion of CRISM CO measurements. We thank A. Brunner, M. Johnson, and M. Lefavor for their development of customized data analysis tools used here and in other SAM publications.Peer reviewedPublisher PD

    Updated calibration and results of the REMS-H humidity sensor of the MSL Curiosity

    Get PDF
    The Curiosity rover, part of the Mars Science Laboratory (MSL), landed in Gale crater in 2012 with the Rover Environmental Monitoring Station (REMS)[1] onboard. REMS includes an atmospheric relative humidity sensor, REMS-H, provided by the Finnish Meteorological Institute (FMI)[2]. REMS-H has continuously recorded hourly near-surface humidity conditions on Mars since landing, resulting in a rich dataset. As of May 2024, REMS-H has been operational for a little over 4100 sols; more than 11 Earth years, providing the longest relative humidity record from the surface of Mars

    REMS-H Revisited: Updated Calibration and Results of the Humidity Sensor of the MSL Curiosity

    Get PDF
    The Mars Science Laboratory (MSL) Curiosity rover landed on 6 August 2012 in Gale crater carrying the Rover Environmental Monitoring Station (REMS). REMS measures various atmospheric and surface parameters, and among its instruments is a relative humidity sensor, REMS-H, provided by the Finnish Meteorological Institute. REMS-H has been operating successfully for more than 12 years since the landing, providing the longest dataset on near-surface humidity conditions on Mars. New calibration measurements performed under a Martian analogue environment at the Planetary Analogue Simulation Laboratory of the German Aerospace Center have been used to evaluate the current calibration of REMS-H, and based on the findings a revised calibration has been developed for REMS-H. This paper describes the revised calibration, presents the corresponding updated results up to sol 3965 of the MSL mission, and analyzes the revised interannual, seasonal, and diurnal variations in relative humidity and derived water vapor mixing ratio. Comparisons with results from the previous calibration, modeling, and the Mars 2020 mission are also discussed. In general, the new calibration resulted in lower relative humidity values, although the difference varies without a clear diurnal or seasonal pattern. The water vapor volume mixing ratio derived from the new relative humidity values shows larger changes between the old and the revised data, especially during early night. The recalibration effort has improved the accuracy and reliability of REMS-H data, aligning the results with orbital observations and simulation runs. Results from this recalibration will be uploaded to NASA’s Planetary Data System, replacing the values available to date

    Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results

    Get PDF
    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Using research to prepare for outbreaks of severe acute respiratory infection

    Get PDF
    Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required

    The Petrochemistry of Jake_M: A Martian Mugearite

    Full text link
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (&gt;15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).</jats:p

    Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover

    Full text link
    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.</jats:p
    corecore