48 research outputs found

    T-maze learning in weanling lambs

    Get PDF
    A major advantage of sheep models in experimental studies of neurodevelopmental disorders (e.g., with prenatal neurotoxicant exposure) is that the equivalent of all three trimesters of human brain development occurs in sheep entirely in utero. However, studies of learning and memory in sheep are limited. The goal of this study was to extend the analysis of spatial learning and memory in adolescent sheep using several traditional T-maze tasks. Both 9- and 14-week-old lambs acquired a delayed non-matching to place task, but the older lambs learned the task significantly faster. In contrast, acquisition of a matching to place task was significantly more difficult. Lambs, like rodents, appear to have a predisposition toward learning “win-shift” spatial problems in a T-maze under appetitive motivation. Lambs also rapidly acquired a position habit and showed typical reversal learning curves. These findings support the use of T-maze tasks to assess behavioral outcomes in various sheep models

    Maternal Choline Supplementation Mitigates Alcohol-Induced Fetal Cranio-Facial Abnormalities Detected Using an Ultrasonographic Examination in A Sheep Model

    Get PDF
    Early detection of prenatal alcohol exposure is critical for designing and testing effectiveness of interventional therapeutics. Choline supplementation during and after prenatal alcohol exposure has shown promising benefits in improving outcomes in rodent models and clinical studies. A sheep model of first trimester-equivalent binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Pregnant sheep were randomly assigned to six groups: Saline+Placebo control, Saline+Choline, binge Alcohol+Placebo (light binging), binge Alcohol+Choline, Heavy binge Alcohol+Placebo (heavy binging) and Heavy binge Alcohol+Choline. Ewes received intravenous alcohol or saline on three consecutive days per week from gestational day (GD) 4 to 41 to mimic first trimester-equivalent weekend binge drinking paradigm. Choline (10 mg/kg in the daily food ration) was administered from GD 4 until term. On GD 76, 11 fetal ultrasonographic measurements were collected transabdominally. Heavy binge alcohol exposure reduced fetal Frontothalamic Distance (FTD), Mean Orbital Diameter (MOD) and Mean Lens Diameter (MLD) and increased Interorbital Distance (IOD) and Thalamic Width (TW). Maternal choline supplementation mitigated most of these alcohol-induced effects. Maternal choline supplementation also improved overall fetal femur and humerus bone lengths compared to their respective placebo groups. Taken together these results indicate a potential dose dependent effect that could impact the sensitivity of these ultrasonographic measures in predicting prenatal alcohol exposure. This is the first study in the sheep model to identify biomarkers of prenatal alcohol exposure in-utero with ultrasound and co-administration of maternal choline supplementation

    Animal Model Systems for the Study of Alcohol Teratology

    No full text

    Eyeblink classical conditioning in the preweanling lamb.

    No full text

    Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss

    No full text
    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258 ± 10 mg/dl peak blood ethanol concentration) or saline in a “3 days/wk binge” pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis

    Chronic Ethanol Increases Fetal Cerebral Blood Flow Specific to the Ethanol-Sensitive Cerebellum Under Normoxaemic, Hypercapnic and Acidaemic Conditions: Ovine Model

    No full text
    Cerebral hypoxia has been proposed as a mechanism by which prenatal ethanol exposure causes fetal alcohol spectrum disorder (FASD) in children, but no study had tested this hypothesis using a chronic exposure model that mimicks a common human exposure pattern. Pregnant sheep were exposed to ethanol, 0.75 or 1.75 g kg−1 (to create blood ethanol concentrations of 85 and 185 mg dl−1, respectively), or saline 3 days per week in succession (a ‘binge drinking’ model) from gestational day (GD) 109 until GD 132. Fetuses were instrumented on GD 119–120 and studied on GD 132. The 1.75 g kg−1 dose resulted in a significant increase in fetal biventricular output (measured by radiolabelled microsphere technique) and heart rate, and a reduction of mean arterial pressure and total peripheral resistance at 1 h, the end of ethanol infusion. The arterial partial pressure of CO2 was increased, arterial pH was decreased and arterial partial pressure of O2 did not change. Fetal whole‐brain blood flow increased by 37% compared with the control group at 1 h, resulting in increased cerebral oxygen delivery. The elevation in brain blood flow was region specific, occurring preferentially in the ethanol‐sensitive cerebellum, increasing by 44% compared with the control group at 1 h. There were no changes in the lower dose group. Assessment of regional differences in the teratogenic effects of ethanol by stereological cell‐counting technique showed a reduced number of cerebellar Purkinje cells in response to the 1.75 g kg−1 dose compared with the control brains. However, no such differences in neuronal numbers were observed in the hippocampus or the olfactory bulb. We conclude that repeated exposure to moderate doses of ethanol during the third trimester alters fetal cerebral vascular function and increases blood flow in brain regions that are vulnerable to ethanol in the presence of acidaemia and hypercapnia, and in the absence of hypoxia
    corecore