3,848 research outputs found

    Monte Carlo simulations of infinitely dilute solutions of amphiphilic diblock star copolymers

    Full text link
    Single-chain Monte Carlo simulations of amphiphilic diblock star copolymers were carried out in continuous space using implicit solvents. Two distinct architectures were studied: stars with the hydrophobic blocks attached to the core, and stars with the polar blocks attached to the core, with all arms being of equal length. The ratio of the lengths of the hydrophobic block to the length of the polar block was varied from 0 to 1. Stars with 3, 6, 9 or 12 arms, each of length 10, 15, 25, 50, 75 and 100 Kuhn segments were analysed. Four distinct types of conformations were observed for these systems. These, apart from studying the snapshots from the simulations, have been quantitatively characterised in terms of the mean-squared radii of gyration, mean-squared distances of monomers from the centre-of-mass, asphericity indices, static scattering form factors in the Kratky representation as well as the intra-chain monomer-monomer radial distribution functions.Comment: 12 pages, 11 ps figures. Accepted for publication in J. Chem. Phy

    The partition function versus boundary conditions and confinement in the Yang-Mills theory

    Get PDF
    We analyse dependence of the partition function on the boundary condition for the longitudinal component of the electric field strength in gauge field theories. In a physical gauge the Gauss law constraint may be resolved explicitly expressing this component via an integral of the physical transversal variables. In particular, we study quantum electrodynamics with an external charge and SU(2) gluodynamics. We find that only a charge distribution slowly decreasing at spatial infinity can produce a nontrivial dependence in the Abelian theory. However, in gluodynamics for temperatures below some critical value the partition function acquires a delta-function like dependence on the boundary condition, which leads to colour confinement.Comment: 14 pages, RevTeX, submitted to Phys. Rev.

    Conformational transitions of heteropolymers in dilute solutions

    Full text link
    In this paper we extend the Gaussian self-consistent method to permit study of the equilibrium and kinetics of conformational transitions for heteropolymers with any given primary sequence. The kinetic equations earlier derived by us are transformed to a form containing only the mean squared distances between pairs of monomers. These equations are further expressed in terms of instantaneous gradients of the variational free energy. The method allowed us to study exhaustively the stability and conformational structure of some periodic and random aperiodic sequences. A typical phase diagram of a fairly long amphiphilic heteropolymer chain is found to contain phases of the extended coil, the homogeneous globule, the micro-phase separated globule, and a large number of frustrated states, which result in conformational phases of the random coil and the frozen globule. We have also found that for a certain class of sequences the frustrated phases are suppressed. The kinetics of folding from the extended coil to the globule proceeds through non-equilibrium states possessing locally compacted, but partially misfolded and frustrated, structure. This results in a rather complicated multistep kinetic process typical of glassy systems.Comment: 15 pages, RevTeX, 20 ps figures, accepted for publication in Phys. Rev.

    Dynamics of thermoelastic thin plates: A comparison of four theories

    Full text link
    Four distinct theories describing the flexural motion of thermoelastic thin plates are compared. The theories are due to Chadwick, Lagnese and Lions, Simmonds, and Norris. Chadwick's theory requires a 3D spatial equation for the temperature but is considered the most accurate as the others are derivable from it by different approximations. Attention is given to the damping of flexural waves. Analytical and quantitative comparisons indicate that the Lagnese and Lions model with a 2D temperature equation captures the essential features of the thermoelastic damping, but contains systematic inaccuracies. These are attributable to the approximation for the first moment of the temperature used in deriving the Lagnese and Lions equation. Simmonds' model with an explicit formula for temperature in terms of plate deflection is the simplest of all but is accurate only at low frequency, where the damping is linearly proportional to the frequency. It is shown that the Norris model, which is almost as simple as Simmond's, is as accurate as the more precise but involved theory of Chadwick.Comment: 2 figures, 1 tabl

    Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms

    Full text link
    Electrochemical insertion-deintercalation reactions are typically associated with significant change of molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration (PITT and GITT), and electrochemical impedance spectroscopy (EIS). This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10 nanometer level using electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J. Appl. Phys

    Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets

    Get PDF
    The results of vacuum-arc deposition of thin ZrO₂coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment

    Wavelet treatment of the intra-chain correlation functions of homopolymers in dilute solutions

    Full text link
    Discrete wavelets are applied to parametrization of the intra-chain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulation. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. Quality of the approximation has been assessed by calculation of the scaling exponents obtained from des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in a better agreement with those from the recent renormalisation group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.Comment: RevTeX, 19 pages, 7 PS figures. Accepted for publication in PR

    Vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under axial loads and end moments

    Get PDF
    A finite element model with seven degrees of freedom per node is developed to study vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under constant axial loads and equal end moments. This model is based on the classical lamination theory, and accounts for all the structural coupling coming from material anisotropy. The governing differential equations are derived from the Hamilton’s principle. Numerical results are obtained for thin-walled composite I-beams to investigate the effects of axial force, bending moment and fiber orientation on the buckling moments, natural frequencies, and corresponding vibration mode shapes as well as axial-moment-frequency interaction curves

    Integrated tunneling sensor for nanoelectromechanical systems

    Get PDF
    Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1nm is essential, requiring the use of structures with a mobile electrode. At such small distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunnelingsensors. Based on this analysis, a tunnelingsensor is fabricated by Si micromachiningtechnology and its proper operation is demonstrated
    corecore