221 research outputs found

    Evaporation from the Southern Ocean Estimated on the Basis of AIRS Satellite Data

    Get PDF
    Evaporation plays an important role in the global water and energy cycles and, hence, in climate change. Evaporation over the Southern Ocean, where the Antarctic sea ice coverage has a large annual cycle, is poorly quantified. In this study, daily evaporation is estimated for the Southern Ocean with a seaicespecific algorithm, using surface temperature and air humidity from National Aeronautics and Space Administration's Atmospheric Infrared Sounder (AIRS), and wind speeds from ModernEra Retrospective Analysis for Research and Applications, Version 2 (MERRA2), reanalysis during 20032016. An uncertainty of 34% was found in the evaporation product. The results indicate that annual evaporation has considerable interannual and regional variability, but with a decreasing trend during the study period over most of the Southern Ocean. There are, however, areas where evaporation has increased, specifically in the Ross Sea in winter and summer, with smaller positive trends in spring and fall. Overall, the changes in the difference between the surface specific humidity and the air specific humidity, and to a much lesser extent in the wind speed, are the main drivers for the changes in evaporation throughout the year. During spring and fall months, changes to the sea ice cover, which alter the surface specific humidity, are the main drivers for the change, but in summer and winter the main driver is the airspecific humidity. Air masses originating from the Antarctic continent (south) are associated with cold and dry conditions, which increase evaporation, whereas air masses from lower latitudes in the Southern Ocean (north) are associated with warm and moist conditions, decreasing evaporation. Comparisons with other reanalysis evaporation products produce similar trends, although annual averages differ

    Evaluation of three numerical weather prediction models for the Weddell Sea region for the Austral winter 2013

    Get PDF
    It is widely recognized that numerical weather prediction (NWP) results for the Antarctic are relatively poor compared to the mid-latitudes. In this study, we evaluate output from three operational NWP systems: the ECMWF, Global Forecast System (GFS) and Antarctic Mesoscale Prediction System (AMPS), for the Austral winter (June-August) of 2013 for the Weddell Sea region, paying special attention to regional patterns of error statistics. This is the first evaluation of NWP systems over the Southern Ocean that also addresses the accuracy of forecasted vertical profiles. In the evaluation, we use data from land- and ship-based automatic weather stations (AWS) and radiosoundings. While the ECMWF and AMPS forecasts are on average biased cold and dry near the surface, the GFS forecasts are on average biased warm and moist. The near-surface wind speed is on average overestimated by the AMPS forecasts, whereas it is slightly underestimated by the forecasts of the other two NWP systems. Among the variables investigated, all three NWP systems forecast the near-surface specific humidity most accurately, followed by the temperature and then the wind speed. The forecast quality for the near-surface and upper-air wind speed degrades the most rapidly with increasing lead time, compared to the other variables. ECMWF is the overall best NWP system when compared against both the near-surface and upper-air observations, followed by AMPS and then GFS. The generally poorest model performance is found in locations with complex terrain along the coast of the Antarctic continent, and the best over the ocean.publishedVersio

    Atmospheric Circulation Response to Anomalous Siberian Forcing in October 2016 and its Long‐Range Predictability

    Get PDF
    Abstract: The warm Arctic-cold continent pattern was of record strength in October 2016, providing the opportunity to test its proposed influence on large-scale atmospheric circulation. We find a record weak polar stratospheric vortex and negative North Atlantic Oscillation in November-December 2016 and link them to increased planetary wave generation associated with cold Siberian anomalies followed by troposphere-stratosphere dynamical coupling. At the same time the warm Arctic anomalies, in particular those over the Barents-Kara Seas, do not appear to play an important role in forcing the atmospheric circulation. Long-range forecasts initialized on 1 October 2016 reproduced both the weak polar vortex and negative North Atlantic Oscillation, as well as their link with the Siberian temperatures. Our results support the stratospheric pathway for atmospheric circulation forcing associated with Siberian surface anomalies and uncover a source of skill for subseasonal forecasts from October to December. Plain Language Summary: The warm Arctic-cold continent pattern is an observed, large-scale pattern of near-surface temperatures where the Arctic is warmer than average and Siberia is colder than average. This pattern was of record strength in October 2016, providing the opportunity to test its influence on the Northern Hemisphere atmospheric circulation and the possibility of skillful long-range forecasts. It has been proposed that the warm Arctic-cold continent pattern can drive large atmospheric waves, which are able to travel from the troposphere into the stratosphere, where they weaken the strong wintertime winds that make up the stratospheric polar vortex. A weakened polar vortex can then lead to changes in the surface pressure that can affect weather patterns. We find a record weak polar stratospheric vortex in late autumn 2016 and link that to cold Siberian anomalies. At the same time the warm Arctic anomalies do not appear to play an important role in forcing the atmospheric circulation. Long-range forecasts initialized in October 2016 reproduced both the weak polar vortex and resulting surface pressure patterns. Our results support the stratospheric pathway for atmospheric circulation forcing by Siberian surface anomalies and uncover a source of skill for subseasonal forecasts in the Northern Hemisphere autumn.Peer reviewe

    Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009

    Get PDF
    Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack

    Assessment of Atmospheric Reanalyses with Independent Observations in the Weddell Sea, the Antarctic

    Get PDF
    Surface layer and upper-air in situ observations from two research vessel cruises and an ice station in the Weddell Sea from 1992 and 1996 are used to validate four current atmospheric reanalysis products: ERA-Interim, CFSR, JRA-55, and MERRA-2. Three of the observation data sets were not available for assimilation, providing a rare opportunity to validate the reanalyses in the otherwise datasparse region of the Antarctic against independent data. All four reanalyses produce 2 m temperatures warmer than the observations, and the biases vary from +2.0 K in CFSR to +2.8 K in MERRA-2. All four reanalyses are generally too warm also higher up in the atmospheric boundary layer (ABL), with biases up to +1.4 K (ERA-Interim). Cloud fractions are relatively poorly reproduced by the reanalyses, MERRA-2 and JRA-55 having the strongest positive and negative biases of about +30 % and -17 %, respectively. Skill scores of the error statistics reveal that ERA-Interim compares generally the most favorably against both the surface layer and the upper-air observations. CFSR compares the second best and JRA-55 and MERRA-2 have the least favorable scores. The ABL warm bias is consistent with previous evaluation studies in high latitudes, where more recent observations have been applied. As the amount of observations has varied depending on the decade, season, and region, the consistency of the warm bias suggests a need to improve the modeling systems, including data assimilation as well as ABL and surface parameterizations.Peer reviewe

    Measurements by Controlled Meteorological Balloons in Coastal Areas of Antarctica

    Get PDF
    An experiment applying controlled meteorological (CMET) balloons near the coast of Dronning Maud Land, Antarctica, in January 2013 is described. Two balloons were airborne for 60 and 106 hours with trajectory lengths of 885.8 km and 2367.4 km, respectively. The balloons carried out multiple controlled soundings on the atmospheric pressure, temperature and humidity up to 3.3 km. Wind speed and direction were derived from the balloon drift. Observations were compared with radiosonde sounding profiles from the Halley Research Station, and applied in evaluating simulations carried out with the weather research and forecasting (WRF) mesoscale atmospheric model. The most interesting feature detected by the CMET balloons was a mesoscale anticyclone over the Weddell Sea and the coastal zone, which was reproduced by the WRF model with reduced intensity. The modelled wind speed was up to 10 m s-1 slower and the relative humidity was 20-40% higher than the observed values. However, over the study period the WRF results generally agreed with the observations. The results suggest that CMET balloons could be an interesting supplement to Antarctic atmospheric observations, particularly in the free troposphere
    • 

    corecore