4,884 research outputs found

    Deconfinement and cold atoms in optical lattices

    Full text link
    Despite the fact that by now one dimensional and three dimensional systems of interacting particles are reasonably well understood, very little is known on how to go from the one dimensional physics to the three dimensional one. This is in particular true in a quasi-one dimensional geometry where the hopping of particles between one dimensional chains or tubes can lead to a dimensional crossover between a Luttinger liquid and more conventional high dimensional states. Such a situation is relevant to many physical systems. Recently cold atoms in optical traps have provided a unique and controllable system in which to investigate this physics. We thus analyze a system made of coupled one dimensional tubes of interacting fermions. We explore the observable consequences, such as the phase diagram for isolated tubes, and the possibility to realize unusual superfluid phases in coupled tubes systems.Comment: Proceedings of the conference on "Quantum Many Body Theories 13", to be published by World Scientifi

    Molecule formation as a diagnostic tool for second order correlations of ultra-cold gases

    Full text link
    We calculate the momentum distribution and the second-order correlation function in momentum space, g(2)(p,p′,t)g^{(2)}({\bf p},{\bf p}',t) for molecular dimers that are coherently formed from an ultracold atomic gas by photoassociation or a Feshbach resonance. We investigate using perturbation theory how the quantum statistics of the molecules depend on the initial state of the atoms by considering three different initial states: a Bose-Einstein condensate (BEC), a normal Fermi gas of ultra-cold atoms, and a BCS-type superfluid Fermi gas. The cases of strong and weak coupling to the molecular field are discussed. It is found that BEC and BCS states give rise to an essentially coherent molecular field with a momentum distribution determined by the zero-point motion in the confining potential. On the other hand, a normal Fermi gas and the unpaired atoms in the BCS state give rise to a molecular field with a broad momentum distribution and thermal number statistics. It is shown that the first-order correlations of the molecules can be used to measure second-order correlations of the initial atomic state.Comment: revtex, 15 pages,8 figure

    The Netherlands:The reinvention of consensus democracy

    Get PDF

    Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea)

    Get PDF
    Complete mitochondrial genomes have been shown to be reliable markers for phylogeny reconstruction among diverse animal groups. However, the relative difficulty and high cost associated with obtaining de novo full mitogenomes have frequently led to conspicuously low taxon sampling in ensuing studies. Here, we report the successful use of an economical and accessible method for assembling complete or near-complete mitogenomes through shot-gun next-generation sequencing of a single library made from pooled total DNA extracts of numerous target species. To avoid the use of separate indexed libraries for each specimen, and an associated increase in cost, we incorporate standard polymerase chain reaction-based “bait” sequences to identify the assembled mitogenomes. The method was applied to study the higher level phylogenetic relationships in the weevils (Coleoptera: Curculionoidea), producing 92 newly assembled mitogenomes obtained in a single Illumina MiSeq run. The analysis supported a separate origin of wood-boring behavior by the subfamilies Scolytinae, Platypodinae, and Cossoninae. This finding contradicts morphological hypotheses proposing a close relationship between the first two of these but is congruent with previous molecular studies, reinforcing the utility of mitogenomes in phylogeny reconstruction. Our methodology provides a technically simple procedure for generating densely sampled trees from whole mitogenomes and is widely applicable to groups of animals for which bait sequences are the only required prior genome knowledge

    Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV

    Get PDF
    In this updated and expanded version of our delayed Comment we show that the np backward cross section, as presented by the Uppsala group, is seriously flawed (more than 25 sd.). The main reason is the incorrect normalization of the data. We show also that their extrapolation method, used to determine the charged piNN coupling constant, is a factor of about 10 less accurate than claimed by Ericson et al. The large extrapolation error makes the determination of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended version of the Comment published in Phys. Rev. Letters 81, 5253 (1998

    Degenerate fermion gas heating by hole creation

    Full text link
    Loss processes that remove particles from an atom trap leave holes behind in the single particle distribution if the trapped gas is a degenerate fermion system. The appearance of holes increases the temperature and we show that the heating is (i) significant if the initial temperature is well below the Fermi temperature TFT_{F}, and (ii) increases the temperature to T≥TF/4T \geq T_{F}/4 after half of the system's lifetime, regardless of the initial temperature. The hole heating has important consequences for the prospect of observing Cooper-pairing in atom traps.Comment: to be published in PR
    • …
    corecore